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Abstract

Magnetic resonance imaging (MRI) is currently the gold

standard for left ventricle (LV) quantification. Detection of

the LV in an MRI image is a prerequisite for functional mea-

surement. However, due to the large variations in the orien-

tation, size, shape, and image intensity of the LV, automatic

LV detection is challenging. In this paper, we propose to

use marginal space learning (MSL) to exploit the recent ad-

vances in learning discriminative classifiers [14, 15]. Un-

like full space learning (FSL) where a monolithic classifier

is trained directly in the five dimensional object pose space

(two for position, one for rotation, and two for anisotropic

scaling), we train three detectors, namely, the position de-

tector, the position-orientation detector, and the position-

orientation-scale detector. As a contribution of this paper,

we perform thorough comparison between MSL and FSL.

Experiments show MSL significantly outperforms FSL on

both the training and test sets. Additionally, we also detect

several LV landmarks, such as the LV apex and two annu-

lus points. If we combine the detected candidates from both

the whole-object detector and landmark detectors, we can

further improve the system robustness even when one de-

tector fails. A novel ranking-based strategy is proposed to

combine the detected candidates from all detectors. Exper-

iments show our ranking-based aggregation approach can

significantly reduce the detection outliers.

1. Introduction

Cardiovascular disease is the number one cause of death

in the developed countries, claiming more lives each year

than the next seven leading causes of death combined [5].

Early diagnosis of cardiovascular disease can effectively

reduce its mortality. Magnetic resonance imaging (MRI)

Figure 1. Detection results for the left ventricle (cyan boxes) and

its landmarks (yellow stars for the left ventricle apex and magenta

stars for two annulus points on the mitral valve).

accurately depicts cardiac structure, function, perfusion,

and myocardial viability with a capacity unmatched by any

other single imaging modality. Therefore, MRI is widely

accepted as a gold standard for heart chamber quantifica-

tion [8]. That means the measurement extracted from other

modalities, such as echocardiography and computed tomog-

raphy (CT), must be verified against MRI. Among all four

heart chambers, the left ventricle (LV) is of particular inter-

est because it pumps oxygenated blood out to distant tissues
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in the entire body. In this paper, we propose a fully auto-

matic and robust method to detect the LV in 2D long-axis

view MRI images. Additionally, we also detect several im-

portant LV landmarks, such as two annulus points on the

mitral valve and the apex. Our approach is generic and

can be applied to other object detection problems without

or with minor modifications.

1.1. Challenges

Automatic LV detection in MRI images is still a chal-

lenging problem. First, unlike CT, MRI provides cardiolo-

gists the flexibility in selecting the orientation of the imag-

ing plane to capture the best view for diagnosis. On the

other hand, this flexibility presents a huge challenge for an

automatic detection system since both the position and ori-

entation of the LV are unconstrained in an image. Roughly,

the LV is rotation symmetric around its long axis (the axis

connecting the LV apex to the center of the mitral valve).

The long-axis views are often captured to perform LV mea-

surement. However, the orientation of the LV long axis in

the image is unconstrained (as shown in Fig. 1). Previous

work [1, 12] on LV detection focused on short-axis views

where the LV shape is roughly circular and consistent dur-

ing the cardiac cycle, thus making the detection problem

much easier. Second, a 2D MRI image used in this ap-

plication only captures a 2D intersection of a 3D object,

therefore, a lot of information is lost. Though the LV and

the right ventricle (RV) have quite different 3D shapes, in

the 2D apical-four-chamber (A4C) view, the LV is likely to

be confused with the RV for an untrained eye (see the first

three examples in Fig. 1, and Fig. 4 as well). Third, the LV

shape changes significantly in a cardiac cycle. The heart is a

non-rigid shape, which keeps beating to pump blood to the

body. In order to study the dynamics of the heart, a cardiol-

ogist needs to capture images from different cardiac phases.

The LV shape changes significantly from the end-diastolic

(ED) phase (when the LV is the largest) to the end-systolic

(ES) phase (when the LV is the smallest). Last but not the

least, the images captured by different scanners with differ-

ent imaging protocols have large variations in intensity (see

Fig. 1).

1.2. Overview of Our Approach

Discriminative learning based approaches have been

proved to be efficient and robust for many 2D object detec-

tion problems [2, 4, 7, 11, 13]. In these methods, shape de-

tection or localization is formulated as a classification prob-

lem: whether an image block contains the target shape or

not. To build a robust system, a classifier only need to toler-

ate limited variation in object pose. The object is found by

scanning the classifier exhaustively over all possible com-

binations of locations, orientations, and scales. Exhaustive

search makes the system robust under local minima. Almost
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Figure 2. Object localization using marginal space learning [15].
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Figure 3. Object localization using full space learning with a

coarse-to-fine strategy.

all previous work [2, 7, 11, 13] under this framework only

estimates the position and isotropic scaling of a 2D object

(three parameters in total). However, in order to localize

the object more accurately, more pose parameters need to

be estimated. In our application, we want to estimate five

pose parameters of the LV: two for translation, one for ori-

entation, and two for anisotropic scaling. However, it is a

challenge to extend the learning-based approaches to a high

dimensional space since the number of hypotheses increases

exponentially with respect to the dimensionality of the pa-

rameter space.

Recently, we proposed a novel technique called marginal

space learning (MSL) [14, 15] to apply learning-based tech-

niques for 3D object detection. To efficiently localize

the object, parameter estimation was performed in a se-

ries of marginal spaces with increasing dimensionality. To

be specific, the task was split into three steps: position

estimation, position-orientation estimation, and position-

orientation-scale estimation (as shown in Fig. 2). After each

step, only a few candidates were kept for the following es-

timation step.

For 2D object detection, the degrees of freedom are five

and it is possible to apply the learning-based techniques

directly in the full parameter space using a coarse-to-fine

strategy. We call this approach full space learning (FSL).

The diagram of FSL is shown in Fig. 3. First, a very coarse

search step is used for each parameter to limit the number

of hypotheses to a tractable level. For example, the search

step for position can be set to as large as eight pixels to

generate around 1000 hypothesis for translation for an im-

age with a typical size of 300 × 200 pixels. The orientation

search step is set to 20 degrees to generate 18 hypotheses

for the whole orientation range. Similarly, the search step

for scales are also set to a large value. Even with this coarse

search step, the total number of hypotheses can easily ex-

ceed one million (see Section 4). Bootstrapping can be ex-

ploited to further improve the robustness of coarse detec-

tion. In the fine search step, we search around each candi-

date using a smaller search step. Normally, we reduce the

1344



search step by half. This refinement procedure can be iter-

ated several times until the search step is small enough. For

example, in the diagram shown in Fig. 3, we iterate the fine

search step twice.

In this paper, we apply MSL to LV detection in 2D MRI

images. MSL was originally proposed for 3D object detec-

tion [15]. Experiments demonstrated that it could reduce

the number of hypotheses by six orders of magnitude, com-

pared to a naive implementation of FSL. Due to the expo-

nential number of hypotheses, FSL simply does not work

for a 3D object detection problem, even after using the

coarse-to-fine strategy. Therefore, there is no direct com-

parison experiment between MSL and FSL. For a 2D object

detection problem, both methods are applicable. As a con-

tribution of this paper, we perform a thorough comparison

experiment on LV detection in MRI images. Experiments

show MSL significantly outperforms FSL on both the train-

ing and test sets.

As shown in Fig. 1, our detection problem is quite chal-

lenging due to the large variations. The performance of a

single whole-object detector is limited. Challenging detec-

tion problems (e.g., pedestrian detection in a crowded en-

vironment [7, 13] and nonrigid objection detection [2]) are

often attacked with the part-based detection scheme. Be-

sides the LV bounding box, we also train detectors for sev-

eral LV landmarks, such as the LV apex and two annulus

points. If we combine the detected candidates from both

the whole-object detector and part detectors, we can fur-

ther improve the system robustness even when one detec-

tor fails. In this paper, we propose a novel ranking-based

method to aggregate all available information. A ranking

model is trained to sort the LV whole-object candidates ac-

cording to the amount of support they get from all detectors.

Experiments show that using the proposed ranking-based

aggregation, we can significantly reduce the detection out-

liers.

In summary, we make two major contributions in this

paper.
1. We perform a comparison experiment between MSL

and FSL and give an explanation for the superior per-

formance of MSL.

2. We propose a novel ranking-based aggregation scheme

for combining the outputs of multiple detectors to im-

prove detection robustness.

2. Part Model for LV

In this section, we show our part model for the LV. Be-

sides the LV bounding box (the cyan box in Fig. 4), we

also detect the LV apex (point A in Fig. 4) and two annulus

points (points C and D in Fig. 4) on the mitral valve. Instead

of defining these landmarks as points and training a position

detector for each, we define them as boxes. A base box (the

magenta box in Fig. 4) is defined as a square that tightly

Figure 4. Part model of the left ventricle (LV) with cyan for the

LV bounding box, magenta for the bounding box of two annulus

points, and yellow for the LV apex.

bounds two annulus points. The base box is aligned with the

axis connecting the annulus points. The apex box is defined

as a square centered at the apex and aligned with the LV

long axis. We define the LV long axis as the axis connect-

ing the apex and the basal center (point B in Fig. 4), which

is the center of two annulus points. There is no standard

way to define of the box size for the apex. We set it to half

of the distance from the apex to the basal center. Detecting

these landmark points as boxes, we can exploit the orienta-

tion and implicit size information of the region around the

landmarks. The detection results are more robust than us-

ing a position detector only. The LV box is defined as a

bounding box of the myocardium and aligned with the LV

long axis. There are some constraints or geometric relation-

ships encoded in our part model. For example, the LV box

and the apex box have the same orientation, while the base

box has a similar orientation to the LV box. From the LV

bounding box, we can get a rough estimate of the position

of the apex and basal center. These geometric relationships

are exploited to pick the best detection box for the LV using

a ranking-based approach as shown in Section 6.

3. Marginal Space Learning for LV Detection

In this section, we present our object detection scheme

using marginal space learning (MSL) [15]. To cope with

different scanning resolutions, the input images are first nor-

malized to the 1 mm resolution.

3.1. Training of Object Position Estimator

To localize a 2D object, we need to estimate five pa-

rameters (two for position, one for orientation, and two for

anisotropic scaling). As shown in Fig. 2, we first estimate

the position of the object in an image. We treat the ori-

entation and scales as the intra-class variations, therefore,
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learning is constrained in a marginal space with two dimen-

sions. Haar wavelet features are very fast to compute and

have been shown to be effective for many applications [11].

We also use Haar wavelet features for learning in this step.

Given a set of position hypotheses, we split them into

two groups, positive and negative, based on their distances

to the ground truth. A positive sample (X, Y ) should satisfy

max{|X − Xt|, |Y − Yt|} ≤ 2 mm, (1)

and a negative sample should satisfy

max{|X − Xt|, |Y − Yt|} > 4 mm. (2)

Here, (Xt, Yt) is the ground truth of the object center. Sam-

ples within (2, 4] mm to the ground truth are excluded in

training to avoid confusing the learning algorithm. All pos-

itive samples satisfying Eq. (1) are collected for training.

Generally, the total number of negative samples from the

whole training set is quite huge. Due to the constraint of

computer memory, we can only train on a limited number

of negatives. For this purpose, we randomly sample about

three million negatives from the whole training set.

Given a set of positive and negative training samples, we

extract 2D Haar wavelet features for each sample and train

a classifier using the probabilistic boosting-tree (PBT) [9].

We use the trained classifier to scan a training image, pixel

by pixel, and preserve top N1 candidates (N1 = 1000
throughout the experiments).

3.2. Training of Position-Orientation Estimator

Suppose for a given image, we have N1 candidates,

(Xi, Yi), i = 1, . . . , N1, for the object position. We then

estimate both the position and orientation. The parameter

space for this stage is three dimensional (2D for position

and 1D for orientation), so we need to augment the dimen-

sion of candidates. For each candidate of the position, we

sample the orientation space uniformly to generate hypothe-

ses for orientation estimation. The orientation search step

is set to be five degrees, corresponding to 72 orientation hy-

potheses. Among all these hypotheses, some are close to the

ground truth (positive) and others are far away (negative).

The learning goal is to distinguish the positive and nega-

tive samples using image features. A hypothesis (X, Y, θ)
is regarded as a positive sample if it satisfies both Eq. (1)

and

|θ − θt| ≤ 5 degrees, (3)

and a negative sample satisfies either Eq. (2) or

|θ − θt| > 10 degrees, (4)

where θt represents the ground truth of the LV orientation.

Since aligning Haar wavelet features to a specific orien-

tation is not efficient, we use the steerable features to avoid

image rotation [15]. Similarly, the PBT is used for train-

ing. The trained classifier is used to prune the hypotheses

to preserve only top N2 candidates for object position and

orientation (N2 = 100 in our experiments).

3.3. Training of Position-Orientation-Scale Estima-
tor

The full-parameter estimation step is analogous to

position-orientation estimation except learning is performed

in the full five dimensional similarity transformation space.

The dimension of each candidate is augmented by scanning

the scale subspace uniformly and exhaustively. The ranges

of Sx and Sy of the LV bounding box are [56.6, 131.3] mm

and [37.0, 110.8] mm, respectively. The search step for

scales is set to 6 mm. To cover the whole range, we gen-

erate 14 uniformly distributed samples for Sx and 13 for

Sy . In total, there are 182 hypotheses for the scale space.

A hypothesis (X, Y, θ, Sx, Sy) is regarded as a positive

sample if it satisfies Eqs. (1), (3), and

max{|Sx − St
x|, |Sy − St

y|} ≤ 6 mm, (5)

and a negative sample satisfies anyone of Eqs. (2), (4), or

max{|Sx − St
x|, |Sy − St

y|} > 12 mm, (6)

where St
x and St

y represent the ground truth of the object

scales in x and y directions, respectively. Similarly, the

steerable features and PBT are used for training.

3.4. Testing Procedure on Unseen Images

This section provides a summary about the testing pro-

cedure on an unseen image. The input image is first nor-

malized to the 1 mm resolution. All pixels are tested us-

ing the trained position classifier and the top 1000 candi-

dates, (Xi, Yi), i = 1, . . . , 1000, are kept. Next, each

candidate is augmented with 72 hypotheses about orien-

tation, (Xi, Yi, θj), j = 1, . . . , 72. The trained position-

orientation classifier is used to prune these 1000 × 72 =
72, 000 hypotheses and the top 100 candidates are retained,

(X̂i, Ŷi, θ̂i), i = 1, . . . , 100. Similarly, we augment each

candidate with a set of hypotheses about scaling and use

the trained position-orientation-scale classifier to rank these

hypotheses. For LV bounding box detection, we have 182
scale combinations, resulting in a total of 100 × 182 =
18, 200 hypotheses. For a typical image of 300 × 200 pix-

els, in total, we test 300× 200 + 1000× 72 + 100× 182 =
150, 200 hypotheses. The final detection result is obtained

using clustering analysis (see [11] for details) on the top 100

candidates after the position-orientation-scale estimation.

4. Full Space Learning for LV Detection

For comparison, we also implemented a full space learn-

ing (FSL) system that directly learns classifiers in the orig-
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Table 1. Parameters for full space learning. The “# Hyph” columns show the number of hypotheses for each parameter. The “Step” columns

show the search step size for each parameter. The “# Total Hyph” column lists the total number of hypotheses tested by each classifier. The

“# Preserve” column lists the number of candidates preserved after each step.

X Y θ Sx a
# Total
Hyph # Preserve

# Hyph Step # Hyph Step # Hyph Step # Hyph Step # Hyph Step

Ccoarse 36 8 mm 23 8 mm 18 20
o 15 16 mm 6 0.2 1,341,360 10,000

Cbootstrap
coarse 1 8 mm 1 8 mm 1 20

o 1 16 mm 1 0.2 10, 000× 1 200

C1

fine 3 4 mm 3 4 mm 3 10
o 3 8 mm 3 0.1 200× 243 100

C2

fine 3 2 mm 3 2 mm 3 5
o 3 4 mm 3 0.05 100× 243 100

inal five-dimensional space. The full space has five param-

eters (X, Y, θ, Sx, Sy). Alternatively, we can use the aspect

ratio a = Sy/Sx to replace Sy as the last parameter. Due

to the high dimension of the search space, a coarse-to-fine

strategy is used. The system diagram is shown in Fig. 3.

In total we trained four classifiers. At the coarse level, we

use large search steps to reduce the total number of test-

ing hypotheses. To be specific, to detect the LV bounding

box in a typical image (300 × 200 pixels), we search 36

hypotheses for X , 23 hypotheses for Y , 18 hypotheses for

θ, 15 hypotheses for Sx, and 6 hypotheses for the aspect

ratio a. The corresponding search steps are shown in the

row labeled as “Ccoarse” in Table 1. In total, we search

36×23× 18×15×6 = 1, 341, 360 hypotheses at the coarse

level. Due to the constraint of limited computer memory,

we can only randomly sample a small portion of the neg-

ative samples for training. We randomly select three mil-

lion negative samples. Similar to MSL, the Haar wavelet

features and probabilistic boosting-tree (PBT) are used to

train the coarse classifier Ccoarse. We find that the trained

coarse classifier is not robust enough, so we keep as many

as 10,000 candidates after the coarse classification step to

make sure that most training images have some true posi-

tives included in the candidates.

After that, we train a bootstrapped classifier (still at the

coarse search level). We split these 10,000 top candidates

into positive and negative sets based on their distances to

the ground truth. We train a classifier Cbootstrap
coarse to discrim-

inate them. Using this bootstrapped classifier Cbootstrap
coarse ,

we prune those 10,000 candidates to preserve only 200 top

candidates.

As shown in Fig. 3, we use two iterations of fine level

search to improve the estimation accuracy. In each itera-

tion, the search step for each parameter is reduced by half.

Around each candidate, we search three hypotheses for each

parameter. In total, we search 35 = 243 hypotheses around

each candidate. Therefore, for the first fine classifier C1

fine,

in total we need to test 200 × 243 = 48, 600 hypotheses.

We preserve the top 100 candidates after the first fine-search

step. After that, we reduce the search step by half again and

train another fine classifier C2

fine. Finally, similar to MSL,

clustering analysis is exploited to obtain the final detection

result from the top 100 candidates.

The number of hypotheses and search step sizes for

each classifier are listed in Table 1. In total, we test

1, 341, 360 + 10, 000 + 46, 800 + 23, 400 = 1, 424, 260
hypotheses. For comparison, only 150,200 hypotheses are

tested in MSL. The speed of the system is roughly propor-

tional to the number of hypotheses, therefore, using MSL

we can gain a speed-up by a factor of nine.

5. Comparison Experiments of MSL and FSL

In this section, we quantitatively evaluate the perfor-

mance of marginal space learning (MSL) and full space

learning (FSL) for LV detection in MRI images. We have

795 MRI images of the LV long-axis view. We randomly

select 400 images for training and reserve the remaining

395 images for testing. Two error measurements are used

for quantitative evaluation, the center-center distance and

the vertex-vertex distance. Given a box with four vertices

V1, V2, V3, V4, we can consistently sort these four vertices

based on the box orientation. The vertex-vertex distance is

defined as the mean Euclidean distance between the corre-

sponding vertices,

Dv(A,B) =
1

4

4
∑

i=1

‖V A
i − V B

i ‖. (7)

The center-center distance only measures the detection ac-

curacy of the box center, while the vertex-vertex distance

measures the overall estimation accuracy in all five pose pa-

rameters.

Table 2 shows detection errors of the LV bounding box

obtained by MSL and FSL. It is quite clear that MSL

achieves much better results than FSL. The mean center-

center error is 13.49 mm for MSL and 43.88 mm for FSL.

MSL achieves 21.39 mm in the mean vertex-vertex error,

compared to 63.26 mm for FSL. MSL was originally pro-

posed to accelerate 3D object detection [15], but in this ap-

plication to 2D object detection, it also improves detection

accuracy.

The system performance is dominated by the first de-

tector, the position detector in MSL and the coarse detec-

tor Ccoarse in FSL. If a true hypothesis is missed by the

first detector, it cannot be picked up in the following steps.

Studying these two detectors can give us some hints one the
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difference in detection accuracy. Since the same feature sets

(Haar wavelet features) and learning algorithm (PBT) are

used in both detectors, the superior performance of MSL

may come from the following two factors: the sampling

ratio of the negative training set and the variation of pos-

itive samples. Generally, the number of negative samples

is overwhelmingly larger than that of positive samples in a

learning-based approach. Due to the constraint of computer

memory, almost all learning-based systems [4, 11] can only

be trained on a limited number of negative samples. In our

case, we randomly select three million negatives to train the

classifiers in both MSL and FSL. In FSL, the sampling ra-

tio for negative samples is about 0.35% since there are so

many hypotheses to test. On the selected training set with

three million negatives, the classifier Ccoarse in FSL was

well trained, but it did not generalize well on unseen data

since it was trained on relatively too few samples. This is

an inherit limitation of FSL due to the exponential increase

of the hypotheses. In MSL, the search space has only two

dimensions for the position detector. With the same num-

ber of negative training samples (three million), the sam-

pling ratio is significantly higher, about 17% of the whole

negative set. Therefore, the generalization capability of the

position detector in MSL is much better.

The second reason for the performance difference may

come from the variations of positive samples. To make

the trained system robust, the positive samples should be

accurately aligned [10]. On the other hand, to achieve a

reasonable speed, we have to set large search steps for the

coarse classifier in FSL. Therefore, the positive samples in

FSL have large variations in all five parameters (position,

orientation, and scales). For the position detector in MSL,

the positive samples also have large variations in orienta-

tion and scales (actually larger than FSL). However, they

are very accurately aligned in position. With less variations,

it is easier to learn the classification boundary.

MSL is significantly faster than FSL since much fewer

hypotheses need to be tested. As shown in Section 4, the

number hypotheses tested by MSL is about 10.5% of FSL

and the speed is roughly proportional to the number of test-

ing hypotheses. On a computer with a 3.2 GHz processor

and 3 GB memory, the detection speed of MSL is about

1.49 seconds/image, while FSL takes about 13.12 seconds

to process one image.

6. Ranking-Based Multi-Detector Aggregation

Due to the large variations in our dataset, the holistic

approach by treating the whole LV as one object may fail

on some cases. Since we also want to detect some impor-

tant LV landmarks, we train three detectors, one for the LV

bounding box, one for the apex, and the other for the base

(as shown in Fig. 4). Aggregating the detection results from

multiple detectors, we can build a system which is robust

even when one of the above detectors fails.

Part-based detection approaches have been proposed

previously to detect human under occlusion in surveillance

video [7, 13] or generic nonrigid objects [2]. In [13], the

hierarchical human body model has a fixed geometry, e.g.,

the foot box is exactly the lower half of the whole-body

box. With this rigid geometric model, we can convert the

detected part box to the whole-body box and all follow-

ing reasoning is performed at the whole-body level. Shet

et al. [7] proposed a logic-based approach to detect human,

which allows a more flexible part model. However, domain

specific knowledge need to be manually coded in the logic

rule templates. To the other extremity, a loosely coupled

star model was used in [2] to model the nonrigid defor-

mation of an object. The detection always starts from the

whole-object detector and a whole-object candidate is con-

firmed if we can detect a part in the inferred position. Such

a manually defined aggregation scheme cannot fully exploit

the rich information embedded in the detected candidates.

In this paper, we propose a learning-based aggregation

scheme. We keep top 100 candidates from each detector. A

detector tends to fire up around the true position multiple

times, while the fire-ups at wrong positions are sporadic.

This property has been exploited in the clustering analysis

based aggregation scheme [11]. According to this obser-

vation, a correct LV bounding box should have many sur-

rounding LV candidates. Furthermore, around the apex of a

correct LV box, there should be many detected apex candi-

dates. This is also true for the base candidates. Based on the

geometric relationship of the candidates, we learn a ranking

model [3] to select the best LV bounding box among all LV

candidates. After getting the LV detection result, we run the

apex and base detectors again within a constrained range to

refine the detection results of landmarks. After that, it is

straightforward to recover the landmarks (the apex and two

annulus points) from the detected apex and base boxes.

6.1. Ranking Features

All ranking features are based on the geometric re-

lationship between the box under study and the other

candidate boxes. Given boxes A (XA, Y A, θA, SA
x , SA

y )

and B (XB , Y B , θB , SB
x , SB

y ), we can calculate the fol-

lowing four geometric relationships. 1) The center-

center distance, which is defined as Dc(A,B) =
√

(XA − XB)2 + (Y B − Y B)2. 2) The orientation dis-

tance, which is defined as Do(A,B) = ‖θA − θB‖. 3)

The overlapping ratio, which is defined as the intersection

area of A and B divided by their union area, O(A,B) =
(A∩B)/(A∪B). 4) The vertex-vertex distance, Dv(A,B)
(see Eq. (7)).

Given an LV bounding box A, three groups of features

are extracted and used to learn the ranking model. The first

group of features are extracted from the other 99 LV candi-
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Table 2. Comparison of marginal space learning (MSL) with full space learning (FSL) for LV bounding box detection on both the training

(400 images) and test (395 images) sets. The error measures are in millimeters.
Training Set Test Set

Center-Center Distance Vertex-Vertex Distance Center-Center Distance Vertex-Vertex Distance

Mean
Standard
Deviation Median Mean

Standard
Deviation Median Mean

Standard
Deviation Median Mean

Standard
Deviation Median

Full Space Learning 9.73 25.62 1.79 17.31 37.32 5.07 43.88 45.01 21.01 63.26 52.09 46.49

Marginal Space Learning 1.31 0.84 1.15 3.09 1.63 2.82 13.49 24.61 5.77 21.39 30.99 10.19

date boxes. First, all the other LV boxes are sorted using the

vertex-vertex distance to box A. Therefore, we can assign a

consistent ordering to the extracted feature set, across dif-

ferent boxes. Suppose box B is another LV box, we extract

five features from it, including its detection score (which is

assigned by the PBT classifier [9]) and all the above four

geometric features between boxes A and B. In total, we ex-

tract 99×5 = 495 features in this group. The second group

is based on the geometric relationship of box A to all 100

LV apex candidates. From box A, we can predict the posi-

tion of its apex, CA
p . (We assign CA

p as the center of the box

edge on the apex side.) Given an apex box C, three features

are extracted: 1) detection score of box C, 2) distance to the

predicted position, and 3) orientation distance, Do(A,C).
In total, we extract 100×3 = 300 features in this group. To

assign a consistent ordering to the extracted feature set, the

LV apex candidates are also sorted w.r.t. the distance to the

predicted apex position, CA
p . Similarly, we extract 300 fea-

tures based on the geometric relationship of box A and the

top 100 candidates of the LV base. Including the detection

score of box A itself, we have 1+495+300+300 = 1096
features.

6.2. Ranking-Based Aggregation

In this section, we present the RankBoost [3] learning

algorithm, which is used to select the best LV box from the

candidate list. The goal of RankBoost learning is minimiz-

ing the (weighted) number of pairs of boxes that are mis-

ordered by the final ranking, relative to the given ground-

truth. Suppose the learner is provided with ground-truth

about the relative ranking of an individual pair of boxes

x0 and x1. Suppose box x1 should be ranked above box

x0, otherwise a penalty D(x0, x1) is imposed. (Equally

weighted penalty D(x0, x1) = 1 is used in our experi-

ments.) The penalty weights D(x0, x1) can be normalized

to a probability distribution. The learning goal is searching

for the final ranking function H that minimizes the ranking

loss

rlossD(H) =
∑

x0,x1

D(x0, x1)δ[H(x1) ≤ H(x0)]. (8)

Here, δ[.] is 1 if the predicate holds and 0 otherwise.

The RankBoost algorithm (as shown in Fig. 5) exploits

the boosting technique [6] to minimize the ranking loss

(Eq. (8)). In Fig. 5, ht is a weak ranking function, which

Given: Initial distribution D over X × X .

Initialize: D1 = D.

For t = 1, 2, . . . , T

• Train weak learner using distribution Dt to get weak

ranking ht : X → R.

• Choose optimal αt ∈ R.

• Update:

Dt+1(x0, x1) =
Dt(x0, x1) exp[αt(ht(x0) − ht(x1))]

Zt

where Zt is a normalization factor (chosen so that

Dt+1 will be a distribution).

Output the final ranking: H(x) =
∑T

t=1
αtht(x).

Figure 5. The RankBoost algorithm [3].

corresponds to each individual feature presented in Sec-

tion 6.1. The final learned ranking function H is an opti-

mal linear combination of T (T = 25 in our experiments)

features,

H(x) =
T

∑

t=1

αtht(x). (9)

The optimal weight αt for each feature ht can be found

numerically using the Newton-Raphson method. Interested

readers are referred to [3] for more details about the Rank-

Boost algorithm.

7. Experiments on Ranking-Based Aggrega-

tion

In this experiment, we evaluate the performance of our

ranking-based multi-detector aggregation method. We train

three detectors (one for the LV bounding box, apex, and

base, respectively) on the randomly selected 400 MRI im-

ages and tested on the remaining 395 unseen images. The

left half of Table 3 shows the detection errors on unseen

data if we run three detectors independently. A four-fold

cross-validation is performed to test our ranking-based ag-

gregation scheme. We randomly split 395 unseen images

to four roughly equal sets. Three sets are used to train the

RankBoost model, and the remaining set is used for test-

ing. Rotating the configuration until each set has been used

for testing once. The detection errors for the LV bound-

ing box after multi-detector aggregation are listed on the

right half of Table 3. Using our ranking-based aggregation
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Table 3. Quantitative evaluation for LV bounding box, apex, and base detection accuracy with/without ranking-based multi-detector ag-

gregation on an unseen dataset with 395 MRI images. The errors are measured in millimeters. For the LV bounding box, we list both the

center-center and vertex-vertex errors. For the landmarks (the apex and annulus points), we list the Euclidean distance to the ground truth.
Independent Detection Ranking-Based Aggregation

Mean
Standard
Deviation Median Worst 10% Mean

Standard
Deviation Median Worst 10%

LV Bounding Box (Center-Center) 13.49 24.61 5.77 74.71 9.86 16.44 5.24 48.66

LV Bounding Box (Vertex-Vertex) 21.39 30.99 10.19 106.74 17.51 24.71 9.79 82.58

Apex 22.81 45.16 6.09 148.09 14.56 28.33 5.76 86.18

Annulus Points 15.77 21.30 7.35 72.00 12.72 16.35 7.02 54.62

scheme, we significantly reduce the detection error. The

mean center-center error is reduced from 13.49 mm to 9.86

mm, a 26.9% reduction. The mean vertex-vertex error is re-

duced about 18.1% from 21.39 mm to 17.51 mm. Ranking-

based aggregation also reduces the standard deviation sig-

nificantly. The reduction in median errors is more marginal

since most improvement comes from the images with large

detection errors. That means the ranking-based aggregation

scheme can significantly improve the system robustness to

detection outliers. Using the detected LV bounding box to

constrain the searching range for the apex and base, we also

achieve much better results than detecting them indepen-

dently. The mean error of the apex is reduced by 36.1%,

from 22.81 mm to 14.56 mm. We also see considerable

improvement for annulus points. A few examples of the

detection results are shown in Fig. 1.

8. Conclusion

In this paper, we proposed to use marginal space learning

(MSL) to detect the left ventricle (LV) in MRI images. We

performed a thorough comparison between MSL and full

space learning (FSL). Experiments demonstrated that MSL

outperformed FSL on both the training and test sets. Due

to the large variations in MRI images, we proposed to ag-

gregate multiple detectors to further improve the robustness

of the system. A novel ranking-based scheme was proposed

to select the best LV candidate using the geometric rela-

tionship to the other candidates. Combining both holistic

and part detectors, we significantly reduced the LV detec-

tion outliers on unseen data. Our approach is generic and

can be applied to other object detection problems without

or with minor modifications.
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