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Abstract

A state-of-the-art approach to measure the similarity of

two images is to model each image by a continuous distri-

bution, generally a Gaussian mixture model (GMM), and

to compute a probabilistic similarity between the GMMs.

One limitation of traditional measures such as the Kullback-

Leibler (KL) divergence and the Probability Product Kernel

(PPK) is that they measure a global match of distributions.

This paper introduces a novel image representation. We

propose to approximate an image, modeled by a GMM, as

a convex combination of K reference image GMMs, and

then to describe the image as the K-dimensional vector of

mixture weights. The computed weights encode a similarity

that favors local matches (i.e. matches of individual Gaus-

sians) and is therefore fundamentally different from the KL

or PPK. Although the computation of the mixture weights

is a convex optimization problem, its direct optimization is

difficult. We propose two approximate optimization algo-

rithms: the first one based on traditional sampling methods,

the second one based on a variational bound approximation

of the true objective function.

We apply this novel representation to the image cate-

gorization problem and compare its performance to tradi-

tional kernel-based methods. We demonstrate on the PAS-

CAL VOC 2007 dataset a consistent increase in classifica-

tion accuracy.

1. Introduction

We consider the image categorization problem which

consists in assigning to an image one or multiple labels

based on its semantic content. The most successful image

representation to date for this task is certainly the bag-of-

patches which describes an image as an unordered set of

low-level local feature vectors. While the bag-of-patches

discards important information about the image structure, it
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demonstrated state-of-the-art performance in recent evalua-

tions [4, 5].

Kernel-based image classification requires the definition

of a measure of similarity between images. Model-based

similarities are a state-of-the-art approach to defining a

measure of similarity between vector sets. They consist in

(i) modeling each vector set as a distribution and (ii) defin-

ing the measure of similarity between the vector sets as the

similarity between their respective distributions. There are

two leading model-based methods in the case of bag-of-

patches representations.

The first one, the bag-of-visual-words (BOV), models an

image as a discrete distribution [20, 2]. The BOV is based

on an intermediate representation, the visual vocabulary,

which is estimated offline on a large set of low-level fea-

ture vectors. An image is characterized as a histogram of

visual-word counts, i.e. a multinomial. Themost commonly

used measure of similarity between bag-of-words represen-

tations is the χ2 kernel [23]. One limitation of the BOV is

the assumption that the distribution of feature vectors in any

image can be known a priori.

The second one – which is the focus of this paper – mod-

els an image as a continuous distribution, generally a Gaus-

sian mixture model (GMM) [6, 15, 21, 22, 12]. The most

commonly used measures of similarity between two GMMs

are the Kullback-Leibler (KL) divergence [6, 15, 22, 21, 7]

or the Probability Product Kernel (PPK) [9, 10]. As there

is generally no closed-form formula for the KL or PPK be-

tween two GMMs, one should resort to approximations.

While many of the previously cited papers focus on how

to best approximate the true KL or PPK, none of them ad-

dresses their inherent limitation. Indeed, traditional mea-

sures of similarity between distributions give a high simi-

larity when two distributions match globally but a low sim-

ilarity when they match only partially (this effect is exacer-

bated in the case of KL because of the log function). This

implies that two GMMs will typically have a high similar-

ity if all their Gaussians match (at least approximately) but

may have a low similarity because few Gaussians in one of

the GMMs match poorly the Gaussians of the other GMM.
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If we translate this assertion into the image domain, this

means that two images will have a high similarity if they

match completely, e.g. same object in the same background,

but may have a low similarity because they match partially.

We thus propose to approximate an image, modeled as

a GMM, as a convex combination of K reference image

GMMs and to characterize this image as a K-dimensional

vector of mixture weights. These mixture weights measure

a soft count of matching Gaussian components between the

image to be described and each reference image. Hence,

they encode a similarity which favors local matches (i.e.

strong matches between individual Gaussian components)

which is significantly different from traditional measures.

The vector of mixture weights may then be used as input to

a discriminative classifier for categorization.

Our work can be related to dissimilarity-based learning

which is an alternative to traditional kernel-based learning.

In [16], Pekalska et al. propose to represent an object as

a vector of distances with respect to a set of reference ob-

jects. The main difference with our approach is that in [16]

each reference object contributes independently to the rep-

resentation. For instance, if we use the KL as a measure of

distance, the distance-based representation will be plagued

with the limitations of KL. In our case the reference images

contribute jointly to the image representation. This results

in a measure of similarity which better takes into account

strong matches.

Our work can also be related to [17, 1, 18, 19]. While

the BOV represents an image as a vector of posterior visual

word probabilities (when using probabilistic vocabularies),

these papers propose to represent an image as a vector of

posterior concept probabilities. The assumption is that con-

cepts are more semantically meaningful than visual words.

These concepts may be learned in an unsupervised fashion

[17, 1], in which case there is no guarantee that they are se-

mantically meaningful, or in a supervised manner [18, 19]

which requires large amounts of training material. Our

work is significantly different from those as we score im-

ages with respect to other images, not reference concepts.

While reference images might be less semantically mean-

ingful than concepts learned in a supervised manner, they

are more meaningful than visual words.

The remainder of the article is organized as follows. In

section 2, we briefly review the KL and PPK. We provide

definitions, show how they can be approximated in the case

of mixture models and analyze their limitations. This leads

us to introduce our novel image representation in section 3.

We show that the vector of mixture weights can be com-

puted through the optimization of a convex objective func-

tion. As the direct optimization is difficult, we propose two

possible approximations: the first one based on sampling,

the second one based on a variational bound of the objective

function. We also discuss convergence issues. In section 4

we provide experimental results showing that the proposed

framework outperforms a standard kernel-based classifier

employing the Kullback-Leibler Kernel (KLK) or the PPK.

2. Measures between Probability Distributions

Throughout this article, we focus on the KL divergence

and the PPK. We first provide definitions and show how

these measures can be approximated in the case of mix-

ture models. We then discuss the limitations of such mea-

sures. In the following, f(x) =
∑M

i=1
αifi(x) and g(x) =

∑N
j=1

βigi(x) are the two mixture models to be compared.

2.1. Kullback­Leibler divergence

The KL is defined as:

KL(f, g) =

∫

x

f(x) log

(

f(x)

g(x)

)

dx. (1)

It can be approximated using Monte-Carlo sampling [15,

22], the unscented transform [6], a mapping of Gaussian

components [6, 21] or variational bound methods [7]. We

now focus on the latter approximation. The idea of Hershey

and Olsen is to write:

KL(f, g) = H(f, g) − H(f, f). (2)

where H(f, g) is the cross-entropy between f and g and to

compute a variational bound on H :

H(f, g) ≤ −
M
∑

i=1

αi log





N
∑

j=1

βj exp(−H(fi, gj))



 .

(3)

A closed-form formula exists for the cross-entropy

H(fi, gj) between Gaussians. Since this KL approxima-

tion is the difference of two bounds, it is not a bound. Be-

cause the KL is asymmetric, one generally considers its

symmetrized version:

SKL(f, g) = KL(f, g) + KL(g, f). (4)

2.2. Probability Product Kernel

The PPK is defined as:

PPKρ(f, g) =

∫

x

(f(x)g(x))ρ
dx. (5)

In this article we focus on the Bhattacharyya similarity:

B(f, g) = PPK1/2(f, g). (6)

An approximation similar to that used for the KL was pro-

posed in [8] by Hershey and Olsen. It leads to the following

bound:

B(f, g) ≥
√

∑

i,j

αiβjB2(fi, gj) (7)

A closed form formula exists for the Bhattacharyya similar-

ity B(fi, gj) between two Gaussians.
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2.3. Limitations

Let N (µ, σ) denote the one dimensional Gaussian with

mean µ and standard deviation σ. Let us consider the fol-

lowing toy example. Let q be a mixture of two Gaussians:

q =
1

2
N (+2, 1) +

1

2
N (−2, 1). (8)

We will compare the SKL and PPK between q and three

distributions:

p1 = N (−2, 1) , (9)

p2 = N (2, 1) , (10)

p3 =
1

2
N (2 + δ, 1) +

1

2
N (−2 − δ, 1). (11)

where δ is a non-negative value (c.f. Figure 1). To study the

limitations of the SKL and PPK (and not of their approxi-

mations), we estimated the measures numerically, replacing

the integral by a sum over many tiny intervals.

We have SKL(q, p1) = SKL(q, p2) and B(q, p1) =
B(q, p2) by symmetry. SKL(q, p3) (resp. B(q, p3))
is an increasing (resp. decreasing) function of δ with

SKL(q, p3) = 0 (resp. B(q, p3) = 1) if δ =
0. We are interested in the value δSKL such that

SKL(q, p1) = SKL(q, p2) = SKL(q, p3) and δBHA

such that B(q, p1) = B(q, p2) = B(q, p3). We found nu-

merically δSKL ≈ 2.0 and δBHA ≈ 1.5. The value δSKL

was chosen to represent p3 on Figure 1. We can see that

with such a value, while q and p3 share a similar shape (bi-

modal) they are significantly different. On the other hand

p1 and p2 perfectly match one of the Gaussian components

of q but are strongly penalized because they match a single

component.

Let us now try to translate what this toy example means

in the image domain. Even if there is a strong match be-

tween the components of two images, e.g. the two images

contain the same object, the SKL (resp. the PPK) might

be large (resp. small) because the object occurs in differ-

ent backgrounds or because it is occluded in one of the two

images.

3. Images as Mixtures of Mixtures

Let q =
∑N

i=1
πiqi be the GMM that models the image

we want to describe. N denotes the number of Gaussian

components, πi is the mixture weight for Gaussian i and qi

is the i-th Gaussian component. Let {pk, k = 1...K} be a

set of K reference GMMs, each one modeling a reference

image. We write pk =
∑Nk

j=1
πk,jpk,j where Nk denotes

the number of Gaussian components in pk, πk,j is the mix-

ture weight for Gaussian j and pk,j is the j-th Gaussian

component.

Our goal is to approximate q as a convex combination

of pk’s. Let ωk denote the mixture weight associated with
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Figure 1. The SKL between q (black straight line) and p1 or p2

(green and blue dashed lines respectively) is approximately the

same as the SKL between q and p3 (dotted red line).

pk. We choose the optimal ωk’s as those which minimize

the KL between q and
∑K

k=1
ωkpk. This is equivalent to

maximizing the following objective function:

E =

∫

x

q(x) log

(

K
∑

k=1

ωkpk(x)

)

dx . (12)

under the constraints

ωk ≥ 0 , ∀k and

K
∑

k=1

ωk = 1. (13)

This is a convex optimization problem which can

be solved iteratively using the Expectation-Maximization

(EM) algorithm [3]. The E-step consists in computing the

occupancy probability γk(x) i.e. the probability that obser-
vation x was generated by the k-th reference image:

γk(x) =
ωkpk(x)

∑K
j=1

ωjpj(x)
. (14)

The M-step leads to the following estimate:

ω̂k =

∫

x

q(x)γk(x)dx. (15)

However, the computation of the previous integral is diffi-

cult as there is no closed form formula for ratios of GMMs.

We consider two possible approximations using: (i) a sam-

pling method and (ii) a lower-bound method.

3.1. Sampling approximation

Let {X = xt, t = 1...T} be a set of T vectors distributed

according to q. This might be a set of feature vectors drawn
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from q (Monte-Carlo sampling). This might also be the set

of low-level feature vectors directly extracted from the im-

age we want to characterize.

If the number of samples T is large enough, we can

use the law of large numbers and approximate the objective

function (12) as follows:

E ≈ 1

T

T
∑

t=1

log

(

K
∑

k=1

ωkpk(xt)

)

. (16)

This remains a convex objective function which can be op-

timized with respect to the ωk’s using the EM algorithm.

The E-step consists in computing the values γk(xt) for each
sample xt and each reference GMM pk. The M-step gives

the following estimates:

ω̂k =
1

T

T
∑

t=1

γk(xt). (17)

We note that we would have obtained the same re-

estimation formula if we had applied the law of large num-

bers on equation (15) directly.

3.2. Lower­bound approximation

As explained in the previous sub-section, the mixture

weights ωk can be estimated directly from the low-level fea-

tures extracted from the image to be described as in a Maxi-

mum Likelihood Estimation (MLE) framework the samples

used to estimate q are supposed to be distributed according

to q. In such a case there is no need to estimate q, which

might be seen as an advantage of the sampling approxima-

tion. However, we will see that it can be beneficial to esti-

mate q for two main reasons:

• The first reason is a practical one. If we want the ap-

proximation (16) to be reasonably good, T should be

large enough which can result in a high computational

cost during the E-step at the number of Gaussian com-

putations grows linearly with T .

• Secondly, one can incorporate a-priori information in

the model q. In [12], Liu and Perronnin proposed to

estimate the per-image GMMs through the adaptation

of a “universal” GMM using the Maximum a Poste-

riori (MAP) criterion. This was shown to have two

advantages. First MAP estimation leads to a more ro-

bust estimate of parameters than MLE in the case of

scarce training data. Second, there is a correspondence

between the Gaussians of two GMMs adapted from a

common distribution and one can take advantage of

this fact to speed-up the similarity computation.

We first present the estimation of the ωk’s in the general

case, i.e. whatever the criterion used to estimate q. We then

show how it can be speeded-up using the framework of [12].

We rewrite the objective function (12) as follows:

E =

N
∑

i=1

πi

∫

x

qi(x) log





K
∑

k=1

ωk

Nk
∑

j=1

πk,jpk,j(x)



 dx.

(18)

We use the idea proposed by Hershey and Olsen [7] to ap-

proximate the KL divergence between two GMMs and in-

troduce a set of variational parameters γi,k,j which are sub-

ject to the constraints:

0 ≤ γi,k,j ≤ 1 and

K
∑

k=1

Nk
∑

j=1

γi,k,j = 1. (19)

The function (18) becomes:

E =
∑

i

πi

∫

x

qi(x) log





∑

k,j

γi,k,j
ωkπk,jpk,j(x)

γi,k,j



 dx.

(20)

Applying Jensen’s inequality to the concave log-function,

we obtain the following lower-bound:

E ≥
∑

i

πi

∫

x

qi(x)
∑

k,j

γi,k,j log

(

ωkπk,jpk,j(x)

γi,k,j

)

dx .

(21)

Maximizing the lower-bound with respect to γi,k,j’s leads

to the following bound:

E ≥
∑

i

πi log





∑

k,j

ωkπk,j exp(−Hi,k,j)



 . (22)

where Hi,k,j is defined as follows:

Hi,k,j = H(qk, pk,j) = −
∫

x

qk(x) log pk,j(x)dx. (23)

Hi,k,j is the cross-entropy between qi and pk,j and we recall

that it can be computed in closed form in the case where qi

and pk,j are Gaussians.

We propose to compute the set of ωk’s which optimize

the bound on E rather than E. One more time, this is a

convex optimization problem which can be solved with an

EM-like algorithm. The E-step consists in computing the

values γi,k,j that maximize the bound:

γi,k,j =
ωkπk,j exp(−Hi,k,j)

∑

k,j ωkπk,j exp(−Hi,k,j)
(24)

Taking the derivative with respect to ωk and equating it

to zero leads to the M-step:

ω̂k =
∑

i,j

πiγi,k,j . (25)
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This shows that our similarity computation takes into ac-

count the cross-entropy between the individual Gaussians,

as is the case of the KL approximation between two GMMs

(c.f. equation (3)). However, our measure of similarity

is fundamentally different. γi,k,j is a measure of soft-

matching between the Gaussian components qi and pk,j .

Hence, the optimal ωk measures the number of soft matches

between the components of q and the components of pk.

This point will be made clearer in the next subsection.

The cross-entropy computations dominate the cost of

the EM algorithm. EM requires the computation of N ×
∑K

k=1
Nk cross-entropies which is comparable to the cost

of computing K KL divergences between GMMs. If we

make use of the framework of [12], all GMMs are trained

through the adaptation of a common GMM which contains

N Gaussians (Nk = N ). In such a case, we can use the fact

that there is a correspondence between the Gaussian compo-

nents of two GMMs adapted from the same GMM, i.e. that

Hi,k,j is small if i = j and large if i 6= j. This means that

γi,k,j ≈ 0 if i 6= j. The previous approximation reduces the

cost to N × K cross-entropy computations.

3.3. Convergence Issues

Let us go back to our toy example of section 2.3. We

want to approximate q as a convex combination of p1, p2

and p3. As we have q = 1

2
p1 + 1

2
p2, it is trivial to see that

the optimal weights that maximize the objective function

(18) are ω1 = ω2 = 1

2
and ω3 = 0 in the case where δ > 0

(if δ = 0 there is an infinite number of solutions). Hence,

ω3 = 0 whether δ is very large, meaning that q and p3 are

very different, or δ is very small, meaning that q and p3 are

near-identical. Although the perfect matching of Gaussian

components, as is the case of our toy example, happens sel-

dom, this shows that our objective function might give too

much weight to the near perfect matching of Gaussians, as

opposed to SKL or PPK which give too much weight to a

global match. Clearly, the optimal solution is a balance be-

tween global and local matching.

A simple solution that we found to be very effective to

find a middle-ground between these two extreme situtations

is early stopping, i.e. stopping EM after few iterations. An

important fact is that early stopping does not change the

ranking of the ω’s (this property was observed empirically

and a formal proof is under investigation). The larger δ, the

faster ω3 will converge to zero.

Early stopping solves also the problematic case where q

belongs to the reference distributions. This happens in our

image categorization scenario when the reference images

are the set of labeled images. If q = pj , then our objective

function (12) is maximized by ωj = 1 and ωi = 0, ∀i 6= j.

This undesired effect is prevented by early stopping.

3.4. Beyond KL

As explained in section 3.2, the mixture weights ωk are

based on the cross-entropy between individual Gaussians.

It would be interesting to extend this framework to other

measures such as the Bhattacharyya similarity. A heuris-

tic would for instance consist in replacing exp(−Hi,k,j) by
Bi,k,j = B(qi, pk,j) in the E-step (24).

A more principled approach consists in modifying the

objective function. Instead of minimizing the KL between

q and
∑K

k=1
ωkpk, we propose to maximize their Bhat-

tacharyya similarity. This leads to a convex objective func-

tion which is difficult to optimize directly. One more time,

we can optimize a bound on the true objective function

rather than the objective function itself. We now provide

the E- and M-step.

E-step:

γi,k,j =
ωkπk,jB

2

i,k,j
∑

k,j ωkπk,jB
2

i,k,j

. (26)

M-step:

ω̂k =
(
∑

i πi

∑

j

√
πk,jγi,k,jBi,k,j)

2

∑

k(
∑

i πi

∑

j

√
πk,jγi,k,jBi,k,j)2

. (27)

Details are left in the appendix. Preliminary experiments

showed that the principled computation of weights always

outperformed the heuristic approach.

4. Experimental Results

We now apply this representation to an image catego-

rization task. We first describe the database, then the exper-

imental setup and finally the results.

4.1. PASCAL VOC 2007

We used the PASCAL VOC 2007 database [4] which

contains a total of 9,963 images: 5,011 images for training

and 4,952 for testing. There are 20 different object classes:

person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,

boat, bus, car, motorbike, train, bottle, chair, dining table,

potted plant, sofa and tv monitor. During the VOC 2007

competition, the accuracy was primarily measured with the

Average Precision (AP). Therefore, we use the mean of AP

(averaged over the 20 categories) to make our results easily

comparable to the state-of-the-art.

4.2. Experimental Setup

Low-level feature vectors are extracted on regular grids

at multiple scales. There is an average of 1,000 feature vec-

tors per image. We make use of two types of low-level fea-

tures: local histograms of orientations as described in [13]

(later referred to as ORH) and simple RGB statistics (later
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referred to as COL). In both cases, the dimensionality of the

feature vectors was reduced through Principal Component

Analysis.

We evaluated three baseline systems:

• A standard BOV with χ2 kernel [23].

• The method of [12] with the KL kernel (KLK). The

KLK between two distributions p and q is defined as:

Kklk(p, q) = exp (−γSKL(p, q)) . (28)

To set parameter γ we followed [23]: γ is equal to the

inverse of the mean of the SKL between two GMMs

as estimated on a subset of the whole training set.

• The method of [12] with the PPK.

For the second and third baselines, a “universal” GMM is

first estimated with all training images. Then the per-image

GMMs are estimated through MAP adaptation of the uni-

versal GMM. We used the fast scoring described in [12] as

it was shown to have little influence on the classification

accuracy.

We compared these three baselines to the three versions

of our approach (later referred to as MOM for mixture of

mixtures):

• MOM KL sampling: c.f. section 3.1.

• MOM KL lower-bound: c.f. section 3.2.

• MOM PPK: c.f. section 3.4.

For a fair comparison, all image GMMs are also estimated

using the adaptation framework of [12]. We used as refer-

ence images the 5,011 training images.

For all categorization systems, we used the Sparse Lo-

gistic Regression (SLR) [11] as a discriminative classifier.

One classifier is trained per class in a one-versus-allmanner.

For the three proposed approaches, we apply SLR directly

to the vectors of mixture weights. For a fair comparison, we

use the generalized kernel framework of [16] for the three

baseline systems: an image is represented as a vector of

similarities / distances to the set of training images and we

apply SLR to these vectors. In our own experience, using

(i) a regularized kernel classifier such as the Support Vec-

tor Machine (SVM) with a given kernel K(., .) or (ii) the

framework of [16] with K(., .) as similarity measure and

a regularized linear classifier such as SLR lead to similar

results.

In all cases, we have two separate systems: one for each

feature type. The end result is the average of the scores of

the two systems (later referred to as ORH+COL).

0 20 40 60 80 100 120 140
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Number of Gaussian Components

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
e

s
io

n

 

 

MOM KL(lowerbound)

MOM KL(sampling)

Figure 2. Mean AP for the sampling and lower-bound approxima-

tions of MOM KL for the system based on ORH features only.

4.3. Results

Lower-bound vs sampling. We start with the compar-

ison of the sampling and lower-bound approximations for

MOM KL. Results are shown on Figure 2 for the system

based on ORH features as a function of the number of Gaus-

sian components in the per-image GMMs. Similar results

were obtained for the COL features. The lower-bound ap-

proximation clearly outperforms the sampling one. We be-

lieve that this difference can be explained by the a priori in-

formation incorporated in q in the case of the lower-bound

approximation. In the following, we will not consider the

MOM KL sampling approximation anymore.

Influence of the number of EM iterations. We now

study the influence of the number of EM iterations on the

performance of our algorithm. This is shown on Figure 3

for the system based on ORH features as a function of the

number of Gaussian components in the per-image GMMs.

Similar results were obtained for MOM PPK or for COL

features. In all cases, the best results are obtained for 3

to 5 iterations. With more than 5 iterations, the accuracy

decreases quite rapidly. This demonstrates the importance

of early stopping.

Comparative evaluation. The results of the compari-

son of KLK with MOM KL and PPK with MOM PPK are

shown on Figure 4 for the different features. We did not

represent the performance of BOV on these figures because

BOV typically requires a larger number of Gaussians. The

best results we obtainedwith BOVwas a mean AP of 52.6%

with approximately 4000 Gaussians (for ORH + COL). We

can see that the proposed method consistently outperforms

the baseline for all feature types, for both KL and PPK and

for various numbers of Gaussians. We note that the differ-

ence is more pronounced for KL than it is for PPK. We be-
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Figure 3. Influence of the number of EM iterations on the mean

AP for MOM KL lower-bound for different numbers of Gaussian

components (system based on ORH features only).

lieve that this is because PPK is more resilient than KLK to

the poor matching of individual Gaussian components (c.f.

the toy example in section 2.3).

As we used the standard VOC07 protocol, our results

can be compared to those published in the literature. The

best results reported on this dataset during the challengewas

59.4% (INRIA-genetic) [14]. We would like to outline that

the cost of training and testing our system is significantly

lower compared to that of the winning system as it made

use of 21 “channels” (while we make use of only 2: ORH +

COL) and a sophisticated approach to combine them.

We note that an alternative to the proposed approach

would have been to model an image, not as vector of sim-

ilarities/distances to N reference/training images, but as a

vector ofK2×N similarities/distances between theK com-

ponents of the image to be described and the K × N com-

ponents of the N reference images. Using the framework

of [12] (i.e. taking into account the correspondence be-

tween adapted Gaussians), we can reduce the vector size

to K × N . Our initial intuition was that, since this repre-

sentation contains K times more information than the pro-

posed representation, it should perform better. However in

practice, this approach performed worse than the proposed

approach. Our best explanation is the very high dimension-

ality of the vectors: 640,000 dimensions for N = 5, 000
and K = 128.

5. Conclusion

We presented in this article a novel image representa-

tion. The idea was to approximate an image, modeled

by a GMM, as a convex combination of K reference im-

age GMMs and then to describe the image as the K-
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Figure 4. Comparison of the proposed algorithms to traditional

kernel methods: (a) MOM KL versus KLK and (b) MOM PPK

versus PPK. The mean AP is shown as a function of the number

of Gaussian components in the per-image GMMs for the different

features (ORH, COL, ORH+COL).

dimensional vector of mixture weights. We explained that

these mixture weights encode a similarity which favors

strong local matches of Gaussians components rather than a

global match of the distribution, as is the case of traditional

distance / similarity measures such as the SKL or PPK.

We applied this framework to an image classification

task and showed on the PASCAL VOC07 dataset a consis-

tent increase in classification accuracy.

A. Alternative Objective Function

Instead of minimizing the KL between q and
∑K

k=1
ωkpk, we can maximize their Bhattacharyya
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similarity:

E =

∫

x

√

q(x)

√

√

√

√

(

K
∑

k=1

ωkpk(x)

)

dx (29)

=

∫

x

√

√

√

√

N
∑

i=1

πiqi(x)

K
∑

k=1

ωk

Nk
∑

j=1

πk,jpk,j(x)dx.(30)

We apply a first time Jensen’s inequality and write:

E ≥
∑

i

πi

∫

x

√

qi(x)
∑

k

ωk

∑

j

πk,jpk,j(x)dx. (31)

We then introduce a set of variables γi,k,j which are subject

to the constraints: 0 ≤ γi,k,j ≤ 1 and
∑

k,j γi,k,j = 1. The
bound becomes:

∑

i

πi

∫

x

√

√

√

√qi(x)
∑

k,j

γi,k,j
ωkπk,jpk,j(x)

γi,k,j
dx. (32)

Applying again Jensen’s inequality we obtain the following

lower-bound:

E ≥
∑

i

πi

∑

k,j

√
ωkπk,jγi,k,jBi,k,j . (33)

where Bi,k,j is the Bhattacharyya similarity between the

two Gaussians qi and pk,j . Computing derivatives with re-

spect to γi,k,j and ωk and equating them to zero leads re-

spectively to equations (26) and (27).
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