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Abstract

Automated detection of lesions in retinal images can as-
sist in early diagnosis and screening of a common dis-
ease:Diabetic Retinopathy. A robust and computationally
efficient approach for the localization of the different fea-
tures and lesions in a fundus retinal image is presented
in this paper. Since many features have common intensity
properties, geometric features and correlations are used to
distinguish between them. We propose a new constraint for
optic disk detection where we first detect the major blood
vessels and use the intersection of these to find the approxi-
mate location of the optic disk. This is further localized us-
ing color properties. We also show that many of the features
such as the blood vessels, exudates and microaneurysms
and hemorrhages can be detected quite accurately using
different morphological operations applied appropriately.
Extensive evaluation of the algorithm on a database of
516 images with varied contrast, illumination and disease
stages yields 97.1% success rate for optic disk localization,
a sensitivity and specificity of 95.7% and 94.2% respectively
for exudate detection and 95.1% and 90.5% for microa-
neurysm/hemorrhage detection. These compare very favor-
ably with existing systems and promise real deployment of
these systems.

1. Introduction

Diabetic retinopathy (DR) is a common retinal compli-
cation associated with diabetes. It is a major cause of blind-
ness in both middle and advanced age groups. According
to the National Diabetes Information data (US) 1, a total of
23.6 million people i.e. 7.8 percent of the US population
have diabetes out of which only 17.9 million cases are diag-
nosed. Early detection of the disease via regular screening
is particularly important to prevent vision loss. Since a large

∗The work was done while the authors were at IIT Madras
1http://www.diabetes.niddk.nih.gov/dm/pubs/statistics/#estimation

Figure 1. Illustration of various features on a typical retionopathic
image.

population has to be screened and that too repeatedly, an au-
tomated DR diagnostic system can assist in a big way in this
process.

Color fundus images are used by ophthalmologists to
study eye diseases like diabetic retinopathy. Figure 1 shows
a typical retinal image labeled with various feature compo-
nents of Diabetic Retinopathy. Microaneurysms are small
saccular pouches caused by local distension of capillary
walls and appear as small red dots [1]. This may also lead
to big blood clots called hemorrhages. Hard exudates are
yellow lipid deposits which appear as bright yellow lesions.
The bright circular region from where the blood vessels em-
anate is called the optic disk. The fovea defines the center
of the retina, and is the region of highest visual acuity. The
spatial distribution of exudates and microaneurysms and
hemorrhages, especially in relation to the fovea can be used
to determine the severity of diabetic retinopathy.

1.1. Related Work

Sinthaniyothin [12] uses maximum variance to obtain
the optic disk center and a region growing segmentation
method to obtain the exudates. [4] tracks the optic disk
through a pyramidal decomposition and obtains disk local-
ization from a template-based matching that uses the Haus-
dorff distance measure on the binary edge image. However,
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the above methods will fail if exudates similar in bright-
ness and size to the optic disk are present. [13] combines
matched-filter responses, confidence measures and vessel
boundary measures to obtain blood vessels robustly. But
the paper doesn’t extend it to identify diabetic retinopathy
in images.

[1, 7] used blood vessel intersection property to obtain
the optic disk. However, they use the whole blood vessel
network which can lead to wrong or inconclusive results
because of noise from the fringe blood vessels. In contrast,
we use only the main blood vessels, which is more robust.

Statistical classification techniques have been very pop-
ular lately for the problem of lesion classification. Exudates
have color properties similar to the optic disk while Microa-
neurysms are difficult to segment due to their similarity in
color and proximity with blood vessels. In order to classify
detected features, typically, candidate regions are detected
using color/morphological techniques and then classifica-
tion is done on these regions using some classifier. Many
classifiers have been tried including Neural Networks [12],
PCA [9], Fuzzy C-means clustering [10], SVMs ([17],[2],
[16]) and simple Bayesian classification ([16], [14]).

STARE is a complete system for various retinal diseases
[6]. The optic disk is detected using blood vessel conver-
gence and high intensity property. In order to determine
the features and classification method to be used for a given
lesion, a Bayesian probabilistic system is used.

In this paper, we develop methods to automatically de-
tect all of these features in a fundus image using image
processing techniques. We show that many of the features
such as the blood vessels, exudates and microaneurysms
and hemorrhages can be detected quite accurately using
different morphological operations applied appropriately.
Blood vessels of different thicknesses can be extracted us-
ing open and close operations. Exudates appear as bright
patches with sharp edges in retinal images and can be ex-
tracted using open and close operations using filters of dif-
ferent sizes. Microaneurysms and Hemorrhages (MAHMs)
are segmented using morphological filters that exploit their
local ’dark patch’ property. These are further classified as
lesion/non-lesion using a color model extracted from the
blood vessels. We propose a new constraint for optic disk
detection where we first detect the major blood vessels and
then use the intersection of these to find the approximate
location of the optic disk. This is further localized using
color properties. Detection of the Optic disk, fovea and the
blood vessels is used not only for distinguishing them from
lesions but also for extracting color information for better
lesion detection.

The rest of the paper is organized as follows: Sec-
tion 2 details the blood vessel extraction algorithm while
section 3 elucidates the exudate detection procedure; Sec-
tion 4 describes the optic disk detection method and sec-

tion 5 presents the method for detection of fovea, microa-
neurysms and hemorrhages. Section 6 describes determin-
ing the severity of the disease using lesion detection while
in section 7, the results of the algorithm over an extensive
dataset are presented.

2. Multi-Scale Blood Vessel Extraction

In our approach, color images input from the fundus
camera are initially resized to a standard size of 768 × 576
pixels while maintaining the original aspect ratio. We se-
lect the green channel for all our operations because retinal
images are almost always saturated in the red channel and
have very low contrast in the blue channel.

A closing operation is performed on the green channel
image using two different sizes of a structuring element (fil-
ter). Closing operation is defined as dilation (Max filter) fol-
lowed by erosion (Min filter). The formulations of dilation
and erosion for gray scale images are as follows.

Dilation:

A ⊕ B = A1(x, y) = sup
i,j∈b

(A(x − i, y − j) + B(i, j))

Erosion:

A ⊖ B = A2(x, y) = inf
i,j∈b1

(A(x − i, y − j) + B1(i, j))

where A is the input image, B and B1 are the structur-
ing elements or masks used for dilation and erosion respec-
tively. b and b1 are grids over which the structuring ele-
ments are defined.

Dilation in gray scale enlarges brighter regions and
closes small dark regions. The erosion is necessary to shrink
the dilated objects back to their original size and shape.
The dark regions closed by dilation do not respond to ero-
sion. Thus, the vessels being thin dark segments laid out on
a brighter background are closed by such a closing opera-
tion. A subtraction of the closed images across two different
scales (let S1 and S2 be the sizes of the structuring elements
B1 and B2) will thus give the blood vessel segments of the
green channel image. The operation is as follows:

C′ = (A ⊕ B2) ⊖ B2 − (A ⊕ B1) ⊖ B1

We use a disk shaped structuring element for morphological
operations. The radius of the larger disk (S2) is fixed at
a high value (we use 6 pixels for an image of size 768 ×

576 pixels) so that all the vessels including the main blood
vessel get closed. The size of the structuring element is
chosen based on [6] which describes the blood vessels to
be ranging from 1.5-6 pixels in radius on an average. S1 is
chosen adaptively as follows:

1. 1 or 2 pixels below S2 if we want to obtain only the
thicker vessels emanating from the optic disk.
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(a) (b)

(c) (d)
Figure 2. Illustration of the multi-scale vessel extraction algorithm
on an image of our dataset: (a) The original green channel im-
age, (b) The green image dilated at scale S2, (c) The entire vessel
network obtained at lower scale S1 (criterion 2), (d) The thicker
vessels obtained using higher S1 (criterion 1).

2. At least 4 pixels below S2 to obtain the entire blood
vessel network.

Criterion 1 is used for optic disk localization whereas
criterion 2 is used in microaneurysms and hemorrhages de-
tection. The image C′ is thresholded (90% of the max-
imum intensity) and median filtered to obtain the binary
image of the blood vessels (U). Morphological thinning is
then performed on U to obtain the skeleton of the blood
vessel network. Thinning operation is implemented as
U − (U ⊖ B1 − U ⊖ B2), where B1 and B2 are disjoint
structuring elements and U is the complement of the image
U. Noise can occur in the thinned image usually in the form
of dots. A 2 × 2 median filtering operation is performed to
remove the isolated specks of noise. The vessel segments
being connected structures are unaffected by this operation.
An additional source of noise in retinopathic images could
be exudates, the removal of which is detailed in section 6.
Figure 2 shows the results of the vessel extraction algorithm
on an image having no exudates.

3. Exudate Localization and Detection

Exudates appear as bright lesions in retinopathic im-
ages and have sharp edges and high contrast with the back-
ground. Most of the standard edge detectors like Sobel and
Canny add a lot of noise and miss out key edges when used
for extracting exudate edges and hence are not suitable for
this application. We perform boundary detection for exu-
dates using morphological operations.

Dilation is performed on the green channel at 2 differ-
ent scales: S3 and S4, both of which are greater than S2

which was used for vessel extraction. Hence, at both S3

and S4, the blood vessels do not appear in the dilated result.
The exudates being bright with sharp edges respond to dila-
tion. Subtraction of the results across the 2 scales gives the
boundaries of the exudates: P = (A ⊕ B4) − (A ⊕ B3).
The image P is thresholded in intensity to obtain the binary
boundaries. The threshold is chosen as α times the maxi-
mum intensity in P where α is obtained by training. Hard
exudates give closed boundaries in the thresholded result.
Short breaks in the contours are connected by smoothing
splines. This bridging of short breaks in boundaries is use-
ful for extracting softer exudates. A morphological filling
(reconstruction) operation is then used to search for regions
bounded by closed contours in the result. It is defined as
follows:

Ek = (Ek−1
⊕ B) ∩ Hc (1)

This is iterated starting from k = 1 until Ek = Ek−1.
Here, Hc is the complement of the thresholded binary im-
age which act as mask, B is a 4-connected structuring ele-
ment and E0 is an image containing a seed point. A seed
is a single pixel or a collection of pixels where the change
is selected to begin. Each seed pixel and its 4 neighboring
pixels are flipped and the process is continued subject to
the mask constraint. This process will eventually fill all the
holes in the image whose boundaries are defined by H.

Morphological filling operation on the binary image thus
gives us the candidate exudate patches. However, the candi-
date regions may contain artifacts. Therefore, a linear clas-
sifier is built which uses the brightness and edge properties
of exudates. Exudates are bright yellow or white in color
and have high intensity in the green channel. We localize
the exudate patches more accurately by taking all the candi-
date regions whose mean intensities in the green channel are
greater than a fraction β (obtained by training) of the max-
imum intensity in the channel. For classifying the patches
based on their edge strength, the gradient magnitude image
of the green channel is chosen. This gradient magnitude
image is thresholded (the absolute threshold γ obtained by
training) and the number of white pixels in the thresholded
image for each exudate patch is counted. We denote this as
the gradient count of each patch. Patches which do not have
sufficient gradient count (δ) are discarded.

Patches that satisfy both the brightness criterion and gra-
dient count are retained. In each of the patches classified as
exudates, the exact lesion boundary is tracked starting from
the pixel with the highest gradient magnitude and complet-
ing the contour based on continuity of gradient magnitude
and direction. Pixels in the interior of these contours are
then accurately classified as exudate pixels. The optic disk
which may invariably appear in the result is masked out us-
ing the procedure outlined in the next section.
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(a) (b)

(c)
Figure 3. Illustration of the exudate algorithm on an image of our
dataset: (a) The original image, (b) Localized candidate regions,
(c) Final result with exudate pixels in black color and optic disk
masked out.

The various thresholds like α, β etc. were obtained
by training the exudate algorithm on an additional set of
50 color fundus images obtained from ophthalmologists.
Ground truth images were obtained for this set with exu-
dates pre-marked and the parameter values that gave opti-
mal results (in terms of detecting true exudates and not de-
tecting artifacts) were chosen. The values we obtained are
α = 0.06, β = 0.52, γ = 3 and δ = 4.

Figure 3 shows the steps of the exudate detection algo-
rithm on an image of our dataset. The candidate regions ob-
tained after morphological segmentation are shown in Fig-
ure 3 (b) and the result after classification, pixel identifica-
tion and optic disk removal is shown in Figure 3 (c).

4. Optic Disk Detection

The detection of the optic disk in fundus images is a very
important task because of its similarity in brightness, color
and contrast to the exudates. It invariably appears in exudate
detection results and hence there is a need to mask it out.
Moreover, the optic disk is an important retinal feature and
can be used for registration of retinal images. It can also be
used to diagnose other diseases like Glaucoma.

In this paper, we use a constraint that has been over-
looked so far which is to detect the optic disk using con-
vergence of only the thicker blood vessels arising from it.
This significantly improves the performance compared to
existing techniques that use the entire vessel network. Also,
this thicker vessel convergence is almost always present in
the image as opposed to other features of the optic disk such

as color or circular shape. This approach is combined with
the high intensity property of disk regions in a cost function
to improve the robustness of optic disk detection compared
to existing methods.

4.1. Exudate Subtraction

The vessel extraction algorithm detailed in section 2 (us-
ing criterion 1) yields the skeleton of the thicker blood ves-
sels. These ’thicker’ vessels include the main blood vessel
and other smaller but thick vessels emanating from the op-
tic disk. Exudates have the potential of occurring as noise
in the vessel segmentation because closing and subtract-
ing the irregularly shaped exudates using regular structur-
ing elements is not an exact operation (i.e. the shape of
exudates does not remain the same after the closing oper-
ation). Hence, we perform an additional step to overcome
this limitation. The result of the exudate detection algo-
rithm is dilated and subtracted from the blood vessel result.
This removes any noise due to exudates in the extraction of
the main blood vessel. The resulting image after exudate
subtraction is then processed to obtain the optic disk center.

4.2. Vessel Convergence

The segments of the thicker blood vessel skeleton
are modeled as lines. We transform the vessel image
into the Hough space using the Hough Transform (HT)
(x, y) HT

−−−→
(r, θ) to obtain the lines. The dataset of lines

thus generated is reduced by eliminating lines with slopes
θ < 450. This can be done as the vessels converging at the
optic disk typically have a high slope in the vicinity of the
disk. This reduced dataset of lines is intersected pairwise
to generate an intersection map. Lines close to each other
and with nearly the same slope are not intersected due to a
higher triangulation error.

Weighted Convergence Optimization: The intersection
map generated from candidate line segments of the thicker
vessels is used to find the location of the optic disk. The
map is dilated to make the region of convergence more ap-
parent.

Dilation and erosion in binary images are implemented
as OR and AND filters (extension of Max and Min filters
in gray scale). Let the dilated intersection image be M and
the green channel image be A. Then, we define a weighted
image (J) as follows:

J = M + wA

where w is obtained as follows:

w =

{

1, if N ≤ N0

(N0/N)β , if N > N0

(2)
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(a) (b) (c)

(d) (e) (f)
Figure 4. Illustration of the steps of the optic disk algorithm on an
image of our dataset: (a) The green channel image, (b) The major
vessels obtained using criterion 1, (c) The dilated intersection map,
(d) The image J obtained by weighted summation, (e) Final disk
center result indicated as a black spot, (f) The disk mask obtained.

where N is the number of high intensity pixels
(Intensity > 200) in the initial green channel image, N0

is the number of pixels corresponding to the size of a nor-
mal disk (taken from [12]), β is a power law factor (taken
as 2) which rapidly decreases w as N increases above N0.
Using this formula, the image A is given less weightage
if the number of bright pixels (N ) in the green channel is
more than a threshold N0 (sign of bright exudates); else A
is given a weightage of 1 (normal images). Image J is then
used to obtain the optimal location of the optic disk using a
cost function F .

F =
∑

i,j∈W

J(x − i, y − j) (3)

where (x, y) is a point in the intersection map and sum-
mation is over a circular sliding window (W ). F can be
computed efficiently using dynamic programming/integral
images. The point (x, y) which maximizes F , is taken as
the location of the optic disk. A box is placed around the
disk location in green channel and a closing operation is
performed to eliminate blood vessels. The gradient image
of the result is thresholded (th>3) and a circular mask is
obtained using Hough Transform for the optic disk. Figure
4 shows the steps of the optic disk localization algorithm
on an image of our dataset. The vessels of Figure 4 (b) are
obtained after exudate subtraction.

5. Detection of Microaneurysms and Hemor-
rhages

Microaneurysms are small blood clots which occur due
to capillary burst. They are the hardest to detect in retino-
pathic images. Hemorrhages are bigger clots. Microa-

neurysms And HeMorrhages (MAHMs) are treated as holes
(i.e. small dark blobs surrounded by brighter regions) and
morphological filling is performed on the green channel
to identify them. The filling operation in gray scale is
an extension of binary filling used in section 3. The un-
filled green channel image is then subtracted from the filled
one and thresholded in intensity to yield an image (R)
with microaneurysm patches. The threshold (ν) is chosen
based on the mean intensity of the retinal image in the red
channel. For a mean intensity of 127 (taken as reference
on the intensity scale of 0-255), ν was chosen as 7 (ob-
tained by training as described in Section 3). The thresh-
old is incremented/decremented by 1 for every 20 units in-
crease/decrease in the mean.

Blood vessels can also appear as noise in the microa-
neurysm and hemorrhage detection as they have similar
color and contrast to the clots. To remove this additional
noise, the full blood vessel network skeleton (section 2, Cri-
terion 2) is first obtained. The resulting blood vessel net-
work is dilated and subtracted from the image R to remove
the noise due to vessels. The remaining patches are further
classified using intensity properties and a color model based
on the detected blood vessels.

5.1. Blood Vessel based Color Model

Microaneurysms and hemorrhages have similar color
properties as the blood vessels. Hence, a color model is
built for classification of these lesions. We use the blood
vessel result obtained before the thinning operation is per-
formed (i.e. image U in section 2). For every candidate mi-
croaneurysm/hemorrhage patch, the blood vessel segments
in a local neighborhood are obtained. The mean (µ) and
standard deviation (σ) of these vessels in the red and green
channels are calculated. The pixels in each localized patch
whose intensities in the red and green channels are in the
range [µ − 1.2σ , µ + 1.2σ] are retained. This helps in the
removal of background artifacts.

5.2. Detection and Removal of Fovea

The fovea is a dark region located in the center of the
macula region of the retina. It commonly appears in mi-
croaneurysm and hemorrhage detection results much as the
optic disk does in exudate detection results. The fovea is
detected using the location of the optic disk and curvature
of the main blood vessel. The main blood vessel is obtained
as the thickest and largest blood vessel emanating from the
optic disk. The entire course of the main blood vessel is
obtained (from the image of the thicker vessels) by look-
ing for its continuity from the optic disk. This vessel is
modeled as a parabola ([9]). The vertex of the parabola is
taken as the pixel on the main blood vessel that is closest
to the center of the optic disk circular mask. The fovea is
located approximately between 2 to 3 optical disk diameter
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(a) (b)

(c) (d)
Figure 5. Illustration of the steps of our Microaneurysms and Hem-
orrhages detection algorithm: (a) An image from our dataset, (b)
The image R obtained after morphological filling and threshold-
ing, and removing blood vessels and pixels not satisfying the color
model, (c) Fovea detection marked with ’+’, the main blood vessel
and optic disk mask boundary are also shown, (d) The final result
after removing fovea, MAHMs marked in blue.

(ODD) distance from the vertex, along the main axis of the
modeled parabola and is taken as the darkest pixel in this
region. The region of the fovea is taken to be within 1 optic
disk diameter of the detected fovea location and detection
of microaneurysms in this region is suppressed.

Figure 5 shows the steps of the MAHMs algorithm on an
image of our dataset. We use a size threshold to distinguish
between microaneurysm and hemorrhage patches.

6. Predicting the Severity of Disease

The distribution of the exudate lesions about the fovea
can be used to predict the severity of Diabetic macular
edema. [9] has divided the retinal image into 10 sub-regions
about the fovea. The exudates occurring in the macular re-
gion are more dangerous and require immediate medical
attention than the ones farther away. Similarly, the size,
count and distribution of microaneurysms and hemorrhages
is also used to predict the severity of DR. The region around
the optic disk is divided into four quadrants for this pur-
pose. The International Council of Ophthalmology 2 lists
5 levels for Diabetic Retinopathy based on these criteria:
none, mild, moderate, severe, and proliferative. Our system
uses these criteria in order to classify each image in these
categories. Figure 5 contains a very large hemorrhage and
many other smaller hemorrhages and microaneurysms and

2http://www.icoph.org/standards/pdrclass.html

is a case of proliferative Diabetic Retinopathy.

7. Results of Experiments and Discussion

We used a dataset of 516 images for evaluating the algo-
rithm. The images were obtained from diverse sources and
hence have sufficient variations in color, illumination and
quality. The various sources of the images are as follows:
211 images were obtained from ophthalmologists at 2 lo-
cal eye hospitals; 81 images were taken from the STARE
database [7]; 130 images were from the Diaretdb0 database
[8]; 40 images were from the DRIVE database [15] and 54
were from the Red Atlas database 3.

The images in the dataset were classified by ophthal-
mologists based on the lesion type (exudates/MAHMs) into
those with the lesion and those without it. An image having
no lesions is considered normal whereas one that has lesions
like exudates, microaneurysms and hemorrhages is consid-
ered abnormal. Among the 211 images obtained from eye
hospitals, 29 were normal were 182 are abnormal. The
DRIVE database contained 33 normal and 7 abnormal im-
ages. The STARE database had 30 images which were
normal and the other 51 being abnormal. The diaretdb0
database consisting of 130 images had 20 normal and 110
abnormal ones. All the images taken from the Red Atlas
database were abnormal.

Of the 516 images, 345 were identified by ophthalmolo-
gists as having exudates and 171 did not have any exudates.
A total of 348 images were identified as containing microa-
neurysms/hemorrhages while 168 were free from this le-
sion type. The entire algorithm was run on the database
and results for optic disk localization, exudate detection
and MAHMs detection were obtained. The MATLAB code
takes 20 seconds per image on an average to run on a 2 GHz
machine with 448 MB RAM.

Table 1 summarizes the results of our optic disk detec-
tion algorithm on the dataset. The pixel location obtained
prior to placing the circular mask is considered for evalu-
ation purposes. If the pixel location indicated by the optic
disk algorithm falls within the boundaries of the optic disk,
then it is considered a correct detection and vice-versa. The
results in Table 1 are classified based on the source and also
based on the nature of the images (normal or abnormal).

In Table 2, the overall optic disk detection rate of our al-
gorithm is presented along with other results from literature.
Gagnon et al. [4] obtain 100% optic disk detection but their
dataset consists of only normal images without retinopathy.
Adam Hoover et. al. [7] evaluate their optic disk detection
algorithm exclusively on the STARE database. We obtain
better results on the STARE database as indicated by table
1. Figure 6 shows the optic disk localization results (prior
to the masking step) on some images of the dataset. Figures

3http://redatlas.org/main.htm
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Table 1. Results of optic disk localization for specific databases
and for the overall normal, abnormal cases.

Source or Type No. Images No. Correct % Success

Hospitals 211 209 99.1
STARE 81 76 93.8
DRIVE 40 40 100

Diaretdb0 130 127 97.7
Red Atlas 54 49 90.7

Overall Normal 112 111 99.1
Overall Abnormal 404 390 96.5

Table 2. Comparison of results for optic disk localization
Author No. of Images % Success

Chutatape et al. [9] 35 99
Gagnon et al. [4] 40 100

Adam Hoover et al. [7] 81 89
Our Method 516 97.1

(a) (b)

(c) (d)
Figure 6. Optic disk localization (without mask) results indicated
as black spot on some images of the dataset: (a) Image with big,
bright exudates and bright optic disk, (b) An image with non uni-
form illumination from the diaretdb0 database, (c) An image with
lots of blood clots from the STARE database, (d) Another image
from the STARE database.

6 (c) and 6 (d) show 2 cases where our algorithm performs
better than [7] on the STARE database. Sensitivity is the ra-
tio of the number of true positive detections for a lesion type
to the total number of images having the lesion. Specificity
is the ratio of the number of true negative detections to the
total number of images without the lesion type. These defi-
nitions are formulated at the image level but can also be ex-
tended in a similar manner to the pixel level. We obtain sen-
sitivity and specificity results for our algorithm at both the
image and pixel levels. We obtained ground truth images
from the ophthalmologists with lesion (both exudates and

Table 3. Comparison of Results for exudate detection: NI-Number
of Images used, NIEx-Number of Images with Exudates, SN-
Sensitivity, SP-Specificity (ND*-data not given in the paper)

Author NI NIEx SN(%) SP(%)

Chutatape [9] 35 28 100 71.0
Sinthanayothin [12] 30 21 88.5 99.7
Sanchez et al.[11] 20 10 100 90.0

Wang et al.[16] 154 54 100 70.0
Garcia et al.[5](image) 50 25 100 84.0
Garcia et al.[5](lesion) 50 25 84.4 62.7

Fleming et al.[3] 13219 300 95.0 84.6
Sopharak et al.[14] 10 ND* 93.38 98.14

Our approach(image) 516 345 95.7 94.2
Our approach(pixel) 516 345 94.6 91.1

Table 4. Comparison of Results for MAHMs Detection: NI-
Number of Images used, NIMAHMs-Number of Images with
MAHMs, SN-Sensitivity, SP-Specificity

Author NI NIMAHMs SN(%) SP(%)

Sinthanayothin [12] 30 14 77.5 88.7
Our result (Image) 516 348 95.1 90.5
Our result (Pixel) 516 348 92.0 90.1

MAHMs) pixels marked for all images except those from
the diaretdb0 database which already has the ground truth.
The results of the algorithm were evaluated with respect to
the groundtruth results to determine pixel and image level
sensitivity and specificity for each lesion type. The results
were averaged across all images.

(a) (b)

(c)
Figure 7. Our exudate and MAHMs detection results (indicated in
black and blue color respectively) on an image with the optic disk
removed using a white mask in the exudate result: (a) The original
Image with hard exudates and many MAHMs, (b) Our exudate
detection result, (c) Our MAHMs detection result (the result has
been dilated to make the MAHM patches visible).
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(a) (b)
Figure 8. Plot of ROC curves for various lesion types: (a)The ROC
curve for exudates, (b) The ROC curve for MAHMs.

In Table 3, the sensitivity and specificity results of our
exudate detection algorithm are presented for the 516 im-
ages along with other results from the literature. In Table
4, the results for our microaneurysm and hemorrhage de-
tection method are presented along with other results from
the literature. Figure 7 shows the exudate and MAHM de-
tection results on an image of our dataset. Some of the ex-
udates are clustered in the macula pointing to the need for
immediate medical attention. Based on the size, count and
distribution of MAHMs, our algorithm correctly predicted
the level of severity of diabetic retinopathy for this case as
moderate. Figures 8 (a) and 8 (b) show the ROC curves
of our algorithm for exudates and MAHMs respectively.
The sensitivities reach close to 100% for both exudates and
MAHMs at very low (1-specificity), thus demonstrating the
robustness of our algorithm for lesion detection.

8. Conclusion

In this paper, an efficient framework for early detection
of Diabetic Retinopathy has been developed. The optic disk
is tracked by combining the blood vessel convergence and
high disk intensity properties in a cost function. We show
that, as opposed to most methods that use learning tech-
niques, geometrical relationships of different features and
lesions can be used along with simple morphological oper-
ations in order to obtain a very robust system for analysis
of retinal images. Our techniques may further be combined
with some learning methods for possibly even better results.
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