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Abstract

In recent years, 3D deformable surface reconstruction
from single images has attracted renewed interest. It has
been shown that preventing the surface from either shrink-
ing or stretching is an effective way to resolve the ambigu-
ities inherent to this problem. However, while the geodesic
distances on the surface may not change, the Euclidean
ones decrease when folds appear. Therefore, when applied
to discrete surface representations, such constant-distance
constraints are only effective for smoothly deforming sur-
faces, and become inaccurate for more flexible ones that
can exhibit sharp folds. In such cases, surface points must
be allowed to come closer to each other.

In this paper, we show that replacing the equality con-
straints of earlier approaches by inequality constraints that
let the mesh representation of the surface shrink but not ex-
pand yields not only a more faithful representation, but also
a convex formulation of the reconstruction problem. As a
result, we can accurately reconstruct surfaces undergoing
complex deformations that include sharp folds from indi-
vidual images.

1. Introduction
Being able to recover the 3D shape of deformable sur-

faces using a single camera would make it possible to field
reconstruction systems that run on widely available hard-
ware. However, because many different 3D shapes can
have virtually the same projection, such monocular shape
recovery is inherently ambiguous.

The solutions that have been proposed over the years
mainly fall into two classes: Those that involve physics-
inspired models [23, 6, 15, 14, 17, 16, 25, 2] and those that
rely on a non-rigid structure-from-motion approach [5, 27,
1, 12, 24, 26]. The former solutions often entail design-
ing complex objective functions and require hard-to-obtain
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Figure 1. Reconstruction of highly flexible surfaces undergoing
complex deformations. Top Row: Reconstructed 3D mesh over-
laid on the input image. Bottom Row: Side view of the same mesh.
As can be observed from the side view, our method correctly re-
covers the folds of the cloth and of the t-shirt.

knowledge about the precise material properties of the tar-
get surfaces. The latter depend on points being reliably
tracked in image sequences and are only effective for rel-
atively small deformations.

Recently, it has been shown that simply constraining
the distances between selected surface points to remain
constant is enough to recover 3D shape from a single in-
put image, provided that point correspondences can be es-
tablished with a reference image in which the shape is
known [20, 8, 19]. This makes it an attractive alternative
to the techniques mentioned above when dealing with ma-
terials such as paper or cardboard that do not fold sharply.
However, when dealing with more flexible materials such
as the cloth and the t-shirt of Fig. 1, preventing surface
points from moving closer to each other is an overly strong
constraint. As shown in Fig. 2, even though the geodesic
distances between surface points remain constant, the Eu-
clidean ones decrease when folds appear.

In this paper, we propose a convex formulation that lets
us correctly model folds and recover complex 3D shapes
without requiring an initial guess. To this end, we replace

1
1054978-1-4244-3991-1/09/$25.00 ©2009 IEEE



Figure 2. Schematic representation of why inextensibility con-
straints are ill-suited. Left: Two points of the discrete representa-
tion of a continuous surface in its rest configuration. Right: When
deformed, while the geodesic distance between the two points is
preserved, the Euclidean one decreases. This suggests that dis-
tance inequality constraints should be used rather than equalities.

the distance equality constraints of earlier techniques by in-
equality constraints that allow the vertices of the surface
mesh representation to come closer to each other, but pre-
vent them from moving further apart than their geodesic dis-
tance. Because of the scale ambiguity inherent to monocu-
lar shape reconstruction, these inequality constraints do not
fully disambiguate the problem on their own; the surface
can simply shrink until all distances are below the thresh-
old. We overcome this problem by maximizing the distance
to the camera of selected surface points under the inequal-
ity constraints. This can be formulated as maximizing a lin-
ear criterion under linear and quadratic constraints, which
yields a convex problem that can be solved using standard
mathematical routines [4].

Furthermore, when there are too few correspondences
for shape recovery to be effective without additional knowl-
edge, we introduce a linear local surface deformation model
and a motion model that preserve the convexity of our for-
mulation. These models adequately fill in the missing infor-
mation while being flexible enough to allow reconstruction
of complex deformations such as those of Fig. 1.

2. Related Work
3D reconstruction of non-rigid surfaces from single im-

ages is a severely under-constrained problem since many
different shapes can produce very similar projections. Many
methods have therefore been proposed over the years to give
preference to the most likely shapes and disambiguate the
problem.

The earliest approaches were inspired by physics and in-
volved minimizing the difference between an internal en-
ergy representing the physical behavior of the surface and
an external one derived from image data [23]. Many vari-
ations, such as balloons [6], deformable superquadrics [15]
and thin-plates under tension [14], have since been pro-
posed. Modal analysis was applied to reduce the number of
degrees of freedom of the problem by modeling the defor-
mations as linear combinations of vibration modes [17, 16].
Since these formulations oversimplify reality, especially in
the presence of large deformations, more accurate but also
more complex non-linear models were proposed [25, 2]. In
short, even though incorporating physical laws into the al-
gorithms seems natural, the resulting methods suffer from

two major drawbacks. First, one must specify material pa-
rameters that are typically unknown. Second, making them
accurate in the presence of large deformations requires de-
signing very complex objective functions that are often dif-
ficult to optimize.

Methods that learn models from training data were in-
troduced to overcome these limitations. Active Appearance
Models pioneered this approach for faces [7] in 2D and
were quickly followed by 3D Morphable Models [3]. As
in modal analysis, surface deformations are expressed as
linear combinations of deformation modes. These modes,
however, are obtained from training examples rather than
from stiffness matrices and can therefore capture more of
the true variability, but only when sufficient training data is
available.

Non-rigid structure-from-motion methods expanded on
this idea by simultaneously recovering the shape and the
modes from image sequences [5, 27, 1, 12, 24, 26]. While
this is a very attractive idea, few implementations are truly
practical because they require points to be tracked through-
out the whole sequence. Furthermore, they are only effec-
tive for relatively small deformations since using a large
number of deformation modes makes the solution more am-
biguous.

Several methods have recently been proposed to recover
the shape of inextensible surfaces. Some are specifically
designed for applicable surfaces, such as sheets of pa-
per [9, 11, 18]. Others explicitly incorporate the fact that
the distances between surface points must remain constant
as constraints in the reconstruction process [20, 8, 19]. This
approach is a very attractive alternative to the earlier tech-
niques, since many materials do not perceptibly shrink or
stretch as they deform. However, as mentioned above, be-
cause the distances between points of a discrete surface rep-
resentation can decrease in the presence of folds, these con-
straints are too restrictive for very flexible materials. By
contrast, the approach we propose relies on distance in-
equalities, which are better suited for sharply folding sur-
faces. Furthermore, such constraints yield a convex formu-
lation that can be made robust to noise and mismatches.

3. Problem Formulation
We now introduce our convex formulation of the 3D re-

construction problem. We represent the surface as a trian-
gulated 3D mesh and assume we are given a set of corre-
spondences between 3D surface points and 2D locations in
an input image. In practice, we obtain them by matching
SIFT features [13] between the input image and a reference
image in which we know the surface shape. The 2D points
in the reference image correspond to 3D points on the mesh
that we express in terms of the barycentric coordinates with
respect to the facet they belong to.

To simplify our notations, we express all 3D coordinates
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in the camera referential. This entails no loss of general-
ity since the surface can move rigidly with respect to the
camera.

3.1. Noise-Free Shape Recovery
Let A be the matrix of known internal camera parame-

ters and qi = [ui vi]
T a feature point in the input image.

The line-of-sight si defined by qi can be written as

si =
A−1

[

qT
i 1

]T

‖A−1
[

qT
i 1

]T
‖

. (1)

Let pi be the 3D point projecting at qi. In the absence of
noise, the position of pi is entirely defined by its distance
di from the camera along si. Furthermore, if pi belongs to
the facet whose vertices are vj , vk , and vl, it can also be
expressed as

pi =





b
j
i 0 0 bk

i 0 0 bl
i 0 0

0 b
j
i 0 0 bk

i 0 0 bl
i 0

0 0 b
j
i 0 0 bk

i 0 0 bl
i









vj

vk

vl



 , (2)

where b
j
i , bk

i , and bl
i are its barycentric coordinates.

Given Nc such correspondences spread over all the
facets of a mesh, recovering its 3D shape amounts to solv-
ing the feasibility problem

find X ,d

subject to BiX = disi , 1 ≤ i ≤ Nc ,

where X is the vector of concatenated x-, y-, z-coordinates
of the Nv mesh vertices, d is the vector of all depths di, and
Bi contains the barycentric coordinates of each 3D points,
as in Eq. 2 but rearranged to account for vertex order in the
complete mesh.

In the absence of additionnal constraints, the surface can
be scaled and still reproject at the same place. This can be
avoided by imposing inextensibility constraints to recover
the surface whose edge lengths are the same as those of
the reference shape. However, as illustrated by Fig. 2, such
constraints are violated when folds appear between mesh
vertices. It is therefore truer to reality to replace the inex-
tensibility constraints by constraints that allow the vertices
to come closer to each other, but not to move further apart
than their geodesic distance. For all pairs of neighboring
vertices vj and vk, we therefore write

‖vk − vj‖ ≤ lj,k , (3)

where lj,k is the geodesic distance between the vertices.
This prevents the surface from expanding but not from

shrinking to a single point. However, this can easily be
remedied by exploiting the fact that, in the perspective cam-
era model, the lines-of-sight are not parallel. Thus the

largest distance between two points is reached when the sur-
face is furthest away from the camera. Therefore, a nontriv-
ial reconstruction can be obtained by solving the problem

maximize
X,d

Nc
∑

i=1

di (4)

subject to BiX = disi , 1 ≤ i ≤ Nc ,

‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E ,

where E is the set of all mesh edges. This maximization of
a linear criterion under linear and quadratic constraints is
a convex problem that can be easily solved using standard
mathematical routines [4].

3.2. Dealing with Image Noise
Whereas, given perfect correspondences, 3D surface

points are completely defined by their depth, they should
be allowed to move away from the lines-of-sight if the lo-
cations qi are inaccurate. To this end, rather that forcing pi

to lie on its line-of-sight and maximizing di, we consider its
projection on the line-of-sight si, which can be computed
as

d̃i = pT
i si ,

= XT BT
i si . (5)

Replacing di by d̃i in the problem of Eq. 4 yields the new
optimization problem

maximize
X

Nc
∑

i=1

XT BT
i si (6)

subject to ‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E .

We cannot, however, obtain a meaningful solution by
simply solving this problem because nothing forces the 3D
point projections to remain close to their corresponding im-
age locations. Therefore, we need to introduce a term that
explicitly penalizes bad reprojections, and use the formula-
tion introduced in [20]: Enforcing correct reprojection can
be achieved by minimizing ‖MX‖where M is a matrix that
depends on the image locations and barycentric coordinates
of the correspondences. More specifically, M is formed by
concatenating the individual projection equations written as

[

b
j
iH bk

i H bl
iH

]





vj

vk

vl



 = 0 , (7)

with
H = A2×3 −

[

ui

vi

]

A3 , (8)

where A2×3 are the first two rows of A, and A3 is the third
one.
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In the end, we therefore recover the shape by solving the
problem

maximize
X

wd

Nc
∑

i=1

XT BT
i si − ‖MX‖ (9)

subject to ‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E ,

where wd is a weight that controls the relative influence of
depth maximization and image error minimization. In prac-
tice, we set wd to 2/3 because computing depths involves
3Nc values against 2Nc projection equations. This opti-
mization problem remains convex and can be solved by in-
troducing a slack variable [4].

An alternative to this formulation would have been to
use the L∞-norm as suggested in [10]. That approach in-
volves finding a solution for which all reprojection errors
are smaller than a threshold that is iteratively decreased.
We experimented with it in our framework. However, be-
cause we simultaneously maximize depths, large thresholds
allowed incorrect deformations that prevented the process
from converging towards a meaningful solution.

In addition to noise, correspondences may include gross
errors. To remove them, we implemented an iterative proce-
dure that decreases a radius inside which correspondences
are considered as inliers. In practice, we initialize this ra-
dius to 50 pixels and divide it by 2 at every iteration. Fur-
thermore, at each iteration, each valid correspondence equa-
tion is assigned a weight wi computed as

wi = exp

(

−
ei

median(ej , 1 ≤ j ≤ Nin)

)

, (10)

where ei is the reprojection error of correspondence i, and
Nin is the number of inliers. This made our approach robust
to noise and outliers.

4. Using Deformation Models
In the previous section, we presented an approach to re-

construct deformable surfaces from a single image given
correspondences between that image and a reference im-
age with a known shape. Our algorithm is robust to noise
and outliers, but requires matches over the whole surface to
correctly reconstruct all of it. In practice, such correspon-
dences can only be obtained if the surface is consistently
well textured. Since this rarely is the case, we now intro-
duce models that supply the missing information while al-
lowing us to retain our convex formulation.

In this section, we first present a linear local deformation
model that constrains the poorly-textured parts of the sur-
face to assume meaningful shapes. This allows us to recon-
struct surfaces from sparse sets of correspondences, which
is the best we can do given only one image. If we are instead
given a short sequence, such as 3 consecutive video frames,

(a) (b) (c)
Figure 3. Synthetic data. (a) Undeformed mesh that was recon-
structed from a motion capture system seen from the viewpoint
used to generate correspondences. (b) Same mesh in the largest
deformation of our data. (c) We textured the meshes to create im-
ages in which we established correspondences using SIFT.

we can compute the shape in each frame simultaneously and
exploit the temporal consistency of motion to prevent jitter
from one frame to the next. In other words, given a com-
plete video sequence, we can reconstruct 3D shapes in each
individual frame but the motion, while roughly correct, will
look jerky. By contrast, if we compute it over batches of 3
frames, it will look much smoother, as will be seen in Sec-
tion 5.

4.1. Linear Local Models
Representing the shape of a non-rigid surface as a lin-

ear combination of basis vectors is a well-known technique.
Such a deformation basis can be obtained by modal analy-
sis [17, 16], from training data [7, 3], or directly from the
images [27, 1, 12, 24, 26]. Here, we follow a similar idea,
but, rather than introducing a single model for the whole
surface, we represent the deformation of each local patch
as a linear combination of modes. Not only does this yield
a more flexible global model, but it also lets us explicitly
account for the fact that parts of the surface are much less
textured than others and should therefore rely more strongly
on the deformation model. This would not be possible with
a global representation, which would either penalize com-
plex deformations excessively, or allow the poorly textured
regions to assume unlikely shapes.

Let Xi be the x-, y-, z-coordinates of an Nl ×Nl square
patch of the mesh. We model the variations of Xi as a linear
combination of Nm modes, which we write in matrix form
as

Xi = X0
i + Λci , (11)

where X0
i represents the coordinates of the patch in the ref-

erence image, Λ is the matrix whose columns are the modes,
and ci is the corresponding vector of modes weights. In
practice, the columns of Λ contain the eigenvectors of the
training data covariance matrix, computed by performing
Principal Component Analysis on a set of deformed 5 × 5
meshes that were obtained by simulating inextensible de-
formations. Furthermore, to deal with arbitrarily complex
local deformations, we use all N 2

l modes.
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The standard approach when using a linear model is to
replace the original unknowns by the modes weights. How-
ever, since we model the global surface with overlapping
local patches, doing so would not guarantee that the shapes
predicted by the weights associated to two such patches are
consistent. Fortunately, since the deformation modes are
orthonormal, the coefficients ci of Eq. 11 can be directly
computed from Xi as ci = ΛT

(

Xi −X0
i

)

. We therefore
use the same global surface unknown X as before and en-
courage its patches to follow our linear local model. Since
we use all the modes, this can be done by simply penalizing

∥

∥

∥
Σ−1/2ci

∥

∥

∥
=

∥

∥

∥
Σ−1/2ΛT

(

Xi −X0
i

)

∥

∥

∥
(12)

which measures how far the ci, and therefore Xi, are from
the training data, and where Σ is a diagonal matrix that con-
tains the eigenvalues associated with the eigenvectors in Λ.
We can then define the global regularization term

Er(X) =

Np
∑

i=1

wi
∥

∥

∥
Σ−1/2ΛT

(

Xi −X0
i

)

∥

∥

∥
, (13)

by summing the measure of Eq. 12 over all Np overlapping
patches in the mesh. wi is a weight designed to account for
the fact poorly-textured areas should rely more strongly on
the model than well-textured ones. In other words, it should
be inversely proportional to the number of correspondences.
We define it as

wi = exp

(

−
N i

c

median(Nk
c > 0 , 1 ≤ k ≤ Np)

)

, (14)

where N j
c is the number of matches in patch j.

Since this new regularization term has a quadratic formu-
lation similar to the one used for projection equations, we
can include it in the convex optimization problem of Eq. 9,
which yields the new problem

maximize
X

Ef (X) − wrEr(X) (15)

subject to ‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E ,

where Ef (X) contains the depths and correspondence
terms of Eq. 9. wr controls the amount of regularization
we want to impose and its exact value has relatively little
influence on the final result as long as it is large enough to
have a noticeable effect.

Note that our linear local models are in the same spirit
as those introduced in [21], but without having to explicitly
introduce either additional latent variables or a sophisticated
non-linear model.

4.2. Motion Model
In presence of a video sequence, or of several consecu-

tive images, motion can also act as a reliable cue to recon-
struct deformable surfaces. Indeed, we expect the deforma-
tions of the surface between consecutive frames to be coher-
ent. We can therefore use this information to link the shapes
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Figure 4. Comparison of our approach with the one proposed
in [20] on synthetic data. Top: We sampled the facets of 3D
meshes reconstructed from an optical motion capture system to
create correspondences to which we added gaussian noise with
variance 5. We plot the mean vertex-to-vertex reconstruction er-
rors as a function of time for the method of [20], and our approach
with and without using a deformation model, which, in this case,
makes almost no difference. Bottom: We textured the 3D meshes
and projected them to synthesize images from which we extracted
SIFT correspondences. We plot the same errors as before. Note
that our approach performs significantly better in the middle part
of the sequence, which corresponds to the largest deformations.

in three images with a second order motion model. To this
end, we minimize the error between the model’s prediction
and the true motion, which can be written as

Em(Xt−1,Xt,Xt+1) =
∥

∥Xt−1 − 2Xt + Xt+1
∥

∥ , (16)

where Xt is the vector of mesh vertices at time t. Since this
again involves a similar quadratic formulation as before, we
can introduce it in our convex optimization problem, which
becomes

maximize
Xt−1,Xt,Xt+1

1
∑

δ=−1

Et(X
t+δ) − wmEm(Xt−1,Xt,Xt+1)(17)

subject to ‖vt+δ
k − vt+δ

j ‖ ≤ lj,k , ∀(j, k) ∈ E ,

δ ∈ {−1, 0, 1} ,

where Et(X
t) is the global objective function for a single

frame given in the optimization problem of Eq. 15, and wm

sets the influence of the motion model. In the experiments
where we used the motion model, wm was set to 100.
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Figure 5. Visual comparison of the largest deformation of the syn-
thetic sequence. From left to right: Ground-truth mesh, mesh re-
covered with the approach proposed in [20], mesh recovered with
our approach using a deformation model. Note that our approxi-
mation is better than that of the earlier method.

5. Experimental Results
We now present results obtained on synthetic and real

data by solving the optimization problem of Eqs. 9, 15,
or 17 depending on whether we used a model or not. To
this end, we used the matlab SeDuMi package [22], that
effectively solves convex optimization problems.

5.1. Synthetic Data
We applied our approach to synthetic data to quantita-

tively evaluate its performance, and to compare it against a
state-of-the-art technique. To make our experiments as re-
alistic as possible, we obtained 3D meshes, such as those of
Fig. 3(a,b), by deforming a flexible piece of cloth in front
of an optical motion capture system. We then created corre-
spondences by randomly sampling the barycentric coordi-
nates of the mesh facets and projecting them with a known
camera. We added zero-mean gaussian noise with variance
5 to the image locations. In Fig. 4(a), we compare the re-
sults of our technique with those obtained with the method
proposed in [20]. We plot the mean vertex-to-vertex dis-
tance between the reconstructed mesh and the ground-truth
one. In Fig. 5, we visually compare the results of both ap-
proaches for the largest deformation of the sequence. Note
that our approach performs better both with and without us-
ing the deformation models. To even more accurately sim-
ulate real data, we textured the meshes and generated im-
ages, such as the one of Fig. 3(c), with uniform intensity
noise in the range [−10, 10]. We then obtained correspon-
dences by matching SIFT features between a reference im-
age and the input images. Fig. 4(b) depicts the same errors
as before computed from these correspondences. All results
presented above were obtained from single images, since
enough correspondences could be established, and, there-
fore, the motion model of Section 4.2 brought no improve-
ment. Finally, we tested the robustness of our approach to
outliers by assigning random image locations to a given per-
centage of the correspondences. In Fig. 6, we plot the mean
reconstruction error over the sequence as a function of the
outlier rate with and without using the deformation model.
In this case, the motion model proved helpful to further im-
prove the results, particularly in the case when no deforma-
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Figure 6. We added outliers to our synthetic correspondences and
computed the shapes with (red) and without (blue) deformation
models. We plot the average over the sequence of the vertex-to-
vertex mean distances as a function of outlier rate. Top: Errors
without using our motion model. Bottom: Smaller errors using it.

tion model was used. As can be observed from the plots,
our method is robust to up to 40% of outliers.

5.2. Real Images
We tested our approach on real images taken with a 3-

CCD DV camera. We recovered the deformations of flexi-
ble objects such as the cloth of Fig. 7, the cushion of Fig. 8,
and the t-shirt of Fig. 9. Due to the partial lack of texture
and the possible mismatches generated by SIFT, these re-
sults were computed using the local deformation models.
As a consequence of having poor correspondences, parts
of the surface are sometimes not reconstructed absolutely
correctly. However, thanks to our local deformation mod-
els, their shape remains meaningful. In each one of the fig-
ures, we show the mesh recovered using the motion model
overlaid on the input image, the same mesh seen from a
different viewpoint, and the reconstruction obtained with-
out using the motion model. While, from static images, the
meshes obtained with and without using the motion model
look very similar, it can be seen from the videos that the
motion model greatly stabilizes the results. In Fig. 7, we
also show the reconstruction obtained by using the tech-
nique of [20]. As expected, it oversmoothes the sharp folds
whereas our method yields more accurate reconstructions.
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Figure 7. Reconstruction of a deforming cloth. From top to bottom: Mesh recovered using the motion model overlaid on the original image,
same mesh seen from another viewpoint, mesh recovered without using the motion model, mesh recovered with the method of [20]. Note
that their method oversmoothes the sharp folds whereas ours yields more accurate reconstructions.

6. Conclusion
In this paper, we have presented a convex formulation

to the problem of recovering the 3D shape of sharply fold-
ing surfaces. Because the Euclidean distance between two
surface points may decrease when folds appear, the usual
distance equality constraints are only adapted to reconstruct
smoothly deforming surfaces. We have therefore introduced
inequality constraints that prevent points from moving fur-
ther apart than their true geodesic distance, but allow them
to come closer to each other. Maximizing the distance of
surface points to the camera under these constraints, in con-
junction with local deformation models if necessary, has
proved effective to recover the complex deformations of
flexible materials from relatively sparse, noisy correspon-
dences.

In future work, we will seek to remove the requirement
for a reference image in which we know the shape and,
instead, exploit temporal motion consistency more thor-
oughly. More specifically, the frame-to-frame motion of
individual mesh facets can be recovered from correspon-
dences [28] but the estimates are bound to be noisy. How-
ever, considering all mesh facets simultaneously over short
sequences and imposing local deformation models such as
the ones of Section 4.1 will give rise to equations that are
formally very similar to the ones presented in this paper and
should therefore be solvable in a similar manner.
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