
Predicting High Resolution Image Edges with a
Generic, Adaptive, 3-D Vehicle Model

Matthew J. Leotta and Joseph L. Mundy
Brown University

Provdence, RI, USA
{mleotta,mundy}@lems.brown.edu

Abstract

In traffic surveillance applications a good prior model
of vehicle shape and appearance is becoming increasingly
more important for tracking, shape recovery, and recogni-
tion from video. The usefulness of 2-d vehicle models is
limited to a fixed viewing direction; 3-d models are nearly
always more suitable. Existing 3-d vehicle models are ei-
ther generic but far too simple to utilize high resolution im-
agery, or far too complex and limited to specific vehicle in-
stances. This paper presents a deformable vehicle model
that spans these two extremes. The model is constructed
with a multi-resolution approach to fit various image reso-
lutions. At each resolution, a small number of parameters
controls the deformation to accurately represent a wide va-
riety of passenger vehicles. The parameters control both
3-d shape and appearance of parts that deform in the 2-
d manifold of the vehicle surface. These parts are regions
representing windows, headlights, taillights, etc. The com-
bination of part boundaries and surface occluding contours
account for the most consistent edges observed in images
of vehicles. It is shown that the model parameters can be
recovered by fitting the deformable model to real images of
vehicles.

1. Introduction
Road vehicles are one of the most important subjects

in computer vision applications today. They are surpassed
only by human subjects. Three-dimensional (3-d) ap-
proaches to tracking, shape recovery, and recognition of ve-
hicles are becoming increasingly important as cameras be-
come ubiquitous and objects are observed from a variety
of viewpoints. Prior models of vehicles are also extremely
beneficial since image projection leaves many ambiguities
about a scene. This paper describes such a 3-d prior model
for the shape and appearance of vehicles (See Figure 1.) and
uses it to recover vehicle shape and pose from real images.

Figure 1. The multi-resolution deformable vehicle model with
parts. The center column shows the mean vehicle shape for the
first two mesh resolutions and shape with appearance for the third.
The bottom ring depicts a variety of deformations in shape and ap-
pearance at the third resolution obtained by varying only 10 model
parameters.

Over the past two decades, many authors [6, 7, 9, 10, 13,
16] have used a simple polyhedral vehicle model similar to
that shown in Figure 2(a). This model contains only about a
dozen faces and in some cases is deformable to adjust to the
shape of different vehicles. A deformable model is used to
obtain an estimate of the vehicle shape. The shape estimate
can be used for recognition. It is usually assumed that the
edges of the polyhedron are sufficient to predict intensity
edges in an image. Clearly this assumption holds only in
low resolution images.

(a) (b)
Figure 2. Meshes commonly used to model vehicles: (a) simple
polyhedral with ∼12 faces, (b) CAD model with ∼80,000 faces.

1311978-1-4244-3991-1/09/$25.00 ©2009 IEEE

In the same twenty year period that this simple model
has been in use, resolution of video has increased dramati-
cally. In other domains of model-based vision, such as hu-
man face [2] and body [1], the complexity of deformable
3-d models has grown accordingly. The complexity of de-
formable vehicle models has not kept pace.

To address the lack of detail in the simple polyhedral
models, several authors [8, 12, 18] have opted for extremely
high resolution CAD models (Figure 2(b)). These models
have been designed for high quality rendering (e.g. for use
in advertisements) and are poorly suited for use in most vi-
sion algorithms. Recognition algorithms must be run with
each CAD model to find the one that best represents the
data. It is intractable to test all CAD models, so a small
number of CAD models from different vehicle classes are
usually chosen as exemplars. Using multiple excessively
complex exemplars is overkill, especially in the general case
when the target vehicle is not one of the exemplars. A rigid
mesh can only approximately represent a vehicle with dif-
ferent shape.

The goal of this paper is to bridge the gap between
overly simple and overly complex. A 3-d deformable ve-
hicle model (Figure 1) is presented that extends the gen-
erality and adaptability of the simple polyhedral model to
the level of detail and accuracy of the CAD models. This
model is fit to real images of vehicles by hypothesizing
and matching image intensity edges. The fitting recovers
the 3-d pose (rotation and translation) and vehicle shape.
The proposed model is constructed at several mesh resolu-
tions so that complexity can be adjusted for various image
resolutions. In addition, a novel representation of appear-
ance is proposed using deformable parts. These parts model
regions of the vehicle surface (windows, headlights, etc.)
whose boundaries likely generate intensity edges. The re-
gions deform in a 2-d plane and are texture mapped to the
3-d vehicle surface. This approach frees the part geometry
from being restricted to a fixed subset of the 3-d mesh edges.
A combination of occluding contours and part boundaries
projected into the image predict intensity edges.

The remainder of the paper proceeds as follows: Sec-
tion 2 discusses additional related work. Section 3 shows
how the model is represented and used to hypothesize image
edges. Section 4 explains how the shape and pose parame-
ters are estimated from images. Section 5 describes how the
shape priors are learned from CAD models. Section 6 pro-
vides experimental results for fitting the model to images,
and Section 7 draws conclusions and suggests future work.

2. Related Work
The method of fitting parameterized 3-d models to im-

ages falls into the framework put forth by Lowe [14]. Oth-
ers have applied this technique to vehicles. Notably, Koller
et al. [10] use the parameterized simple polyhedral model,

and Ferryman et al. [6] extend this work by applying prin-
cipal components analysis (PCA) to the parameter space.
Projected polyhedron edges are aligned to detected image
edges for fitting and tracking. Fitting accuracy is limited
by the assumption that each visible polyhedron edge corre-
sponds to an intensity edge produced by the vehicle.

On the opposite end of the spectrum, Guo et al. [8]
use CAD models to match vehicle appearance over dras-
tic viewpoint changes. Song and Nevatia [18] use CAD
models to generate binary masks for vehicle detection. In
recent work, Liebelt et al. [12] use CAD models to learn a
sparse 3-d feature map for detecting vehicles and recovering
approximate 3-d pose. The CAD models are used to ren-
der many training images from different viewpoints. These
training images are processed to recover local feature points
with descriptors. These features and descriptors are mapped
back into 3-d and used to detect and localize vehicles in real
images. This sparse model perfectly complements the de-
formable model in this paper. The sparse 3-d feature map
provides an initial guess to the 3-d pose of vehicles. Initial-
ization like this is needed for the gradient decent methods
of this paper used to fit the deformable vehicle mesh to an
image.

Leotta and Mundy [11] use vehicle models in the mid-
dle of the spectrum (hundreds of faces), but these are not
parameterized. The models are constructed by hand using
exemplar CAD models as guides.

3. Model Description
The vehicle model consists of several components: a 3-

d mesh for vehicle shape, 2-d polygons for parts shape, a
mapping of the 2-d parts onto the 3-d mesh, and a mapping
from a low dimensional parameter space into high dimen-
sional shape space. This section describes each of these
components in detail and explains how they are used to hy-
pothesize edges in an image.

3.1. Vehicle Mesh
The 3-d vehicle shape is represented by a polygon mesh

with five components: one for the body and one for each
of the four wheels. As shown in Figure 3(a), the mesh
faces are primarily quadrilaterals with a few triangles. The
complexity of the body mesh is only slightly greater than
the polyhedral model in Figure 2(a). It features additional
faces to represent front and rear bumpers and four wheel
wells. This coarse 3-d mesh is called the template. As
with the deformable simple polyhedral model, its vertices
can be repositioned to capture the rough shape of sedans,
minivans, sport utility vehicles (SUVs), pickup trucks, and
various other passenger vehicles.

While the shape of the template mesh may change, its
topology (i.e. number of faces and their connectivity) re-

1312

(a) (b)
Figure 3. (a) The template 3-d mesh and (b) the texture space mesh

mains the same. Keeping the same topology, the 3-d mesh
can also deform into a plane (Figure 3(b)). Specifically, the
template mesh is flattened into a unit square called the tex-
ture space. This concept comes from computer graphics
where it is used to map intensities of texture images onto the
surface of meshes for more realistic rendering. Here the tex-
ture map is used in a similar way to map 2-d geometry onto
the vehicle surface. For simplicity, the texture map does not
include the underside of the vehicle or inward sides of the
wheels which are generally not observed. The connectiv-
ity of the remaining 2-d faces is the same as in 3-d. The
texture coordinates of the template vertices are determined
once and fixed. They are the same for all configurations of
the corresponding 3-d vertices.

To represent vehicle shape at finer resolutions the tem-
plate mesh is subdivided. Quadrilateral subdivision is ap-
plied by adding new vertices to the center of each edge and
face and then splitting each face into quadrilaterals. This
is the same process used in Catmull-Clark subdivision [4];
however, here the vertex repositioning equations are aban-
doned in favor of a data driven approach described in Sec-
tion 5.1. Subdivision is also applied identically to the tex-
ture space mesh. New texture coordinates are added at their
respective edge and face centroids while existing coordi-
nates are not changed. In this paper only the vehicle body
is represented at multiple subdivision levels. Subdivision is
applied recursively as shown in Figure 4.

(a) (b)

Figure 4. The template mesh is subdivided to produce (a) the sec-
ond resolution, and subdivided again for (b) the third resolution.

3.2. Vehicle Parts
Polygonal regions in the texture space describe the parts

on the vehicle surface. Here parts refers to a collection of
regions on the vehicle surface whose boundaries likely give

rise to image edges. Parts are windows, headlights, tail-
lights, grilles, hubcaps, and license plates. Each part is a
2-d polygon in the texture space with a fixed number of ver-
tices that move freely to capture variations in shape. These
parts are the 2-d analog of the 3-d mesh. Figure 5 shows
an example of the mean parts in the texture space and after
being mapped onto the mean vehicle surface. The notion of
mean shape is clarified in the next section.

(a) (b)
Figure 5. Mean vehicle parts (a) in texture space and (b) mapped
onto the mean vehicle surface.

A texture map is defined as an injective map from the
deformable mesh surface to the texture space. The quadri-
laterals at each mesh resolution are bisected into triangles
to simplify texture mapping algorithms. Texture mapping is
implemented using barycentric coordinates. Each 3-d sur-
face point p is contained in one triangle i with vertices ai,
bi, and ci. The point is uniquely represented as

p = (1− u− v)ai + ubi + vci, (1)

where (u, v) are the barycentric coordinates. Once u and v
are found, (1) is applied again—this time in 2-d with ai, bi,
and ci being the 2-d vertices of corresponding triangle i in
texture space. The resulting p is the texture mapped point.
The texture mapping can be inverted as long as the texture
space point lies within one of the mesh triangles.

It is not sufficient to map each part vertex into 3-d and
connect by line segments. A straight line in texture space
may cross several mesh faces, each oriented differently in
3-d. The line segment must be intersected with each mesh
edge and each intersection point mapped into 3-d forming a
chain of line segments.

3.3. Model Deformations

As mentioned earlier, the positions of both the 3-d mesh
vertices and 2-d part vertices are adjusted to predict the
shape and appearance of arbitrary vehicles. At the third
resolution there are 1444 3-d vertices and 164 2-d vertices
resulting in a 4660 dimensional shape space. A reduced
parameter space is needed to make optimization practical.
PCA provides the necessary reduction while simultaneously
providing a prior distribution on the parameters.

1313

Assume for now that the mesh and part vertices have
been positioned to accurately represent each vehicle in a
database of N vehicles. Section 5 will explain how these
training data are learned. The average value each of the
M parameters (4660 at the third resolution) is computed
over the N training examples. The result is the mean mesh
and mean parts shown in Figure 5. Next the means are
subtracted from the training data which are stacked into a
M ×N matrix D of deviations from the mean. The singu-
lar value decomposition D = UΣV! provides the mag-
nitudes (σi = Σii of diagonal matrix Σ) and directions
(columns of U) of most significant variation. Parameters
in the space of these principal components provide a lin-
ear combination of the N vehicles. One can interpolate
between and extrapolate from the training data. To reduce
the parameter space to m dimensions, the largest m singu-
lar values are retained and the rest are set to zero. By the
properties of singular value decomposition, this m-d sub-
space captures the largest amount of the original variation.
The M × m matrix G formed by the first m columns of
U (assuming σi sorted largest to smallest) provides a map-
ping from a reduced parameter space point p to the full M -
dimensional shape space point q via q = Gp.

The top m singular values can also be interpreted as the
standard deviations of a multivariate normal distribution fit
to the training data in the reduced parameter space. This
normal distribution acts as a prior distribution on the shape
and appearance of vehicles.

3.4. Generating Edge Hypotheses

Detected edges on images of vehicles arise from three
main sources: 3-d surface geometry, albedo discontinuities,
and specular reflections of the environment. Edges from the
first two categories are predicted using the mesh and parts
respectively. Edges from reflections are not consistent over
varying viewpoints and are treated—along with background
edges—as outliers.

Occluding contours of the 3-d mesh are used to predict
edges from shape. If ni is the normal vector of mesh face i
and v is a vector in the viewing direction of the camera, then
the occluding contour generator is defined as the set of all
mesh edges with adjacent faces i and j such that ni · v and
nj · v have different signs. Not all contour generator edges
are visible in the image because of self occlusions. Hid-
den sections of the contour generator are removed by test-
ing against a depth map rendered from the mesh. The green
lines in Figure 6(c) show rendered occluding contours.

The vehicle parts are used to predict interior edges in a
similar way. The part boundaries are mapped back from tex-
ture space onto the surface of the mesh and then projected
into the image. As with the occluding contours, hidden lines
are removed using a depth map (red lines in Figure 6(c)).

(a) (b) (c)
Figure 6. The edges from image (a) are shown in (b). Hypoth-
esized edges from occluding contours and part boundaries are
shown in (c) in green and red respectively.

4. Fitting to Images
Vehicles are difficult subjects for 3-d shape recovery

from images. They are highly specular, have large texture-
less regions, and contain semi-transparent areas. Predict-
ing image intensity at each pixel is intractable and would
require a detailed model of the environment. Stable fea-
ture points are too sparse to fully constrain vehicle shape.
Edges, on the other hand, are sufficiently dense and stable
over changes in viewpoint and environment. Figure 6 in-
dicates the population of edges that the deformable vehicle
model can predict—both on the boundary and in the inte-
rior. It remains to explain how the model pose and shape
are estimated from edges.

The complete parameter space now has either m + 6 di-
mensions (m shape, 3 translation, 3 rotation), or m + 3 di-
mensions (m shape, 2 translation, 1 rotation) when the vehi-
cle is supported by a known ground plane. In either case, a
Lie algebra representation is used for pose parameters. This
is the same as in [5] except pose is relative to the vehicle in-
stead of to the camera. The shape plus pose space is denoted
m′-dimensional.

Given the mean vehicle shape and an initial guess for
pose, the goal is to adjust the shape and pose parameters to
minimize the distance between the hypothesized and actual
image edges. For each hypothesized edge, a 1-d search in
the normal direction finds all nearby edges. The perpen-
dicular distance between each correspondence generates an
error term. Following the framework of [14], the problem
is formulated in terms the linear system:

Jx̂ = e, (2)

where J is the Jacobian matrix and e is a vector of error
terms. The solution, x̂, represents the incremental param-
eter updates needed to minimize the measured error. Each
row i of J is the derivative of error function ei = Ei(x)
which maps parameter space into a 1-d subspace of image
coordinates for measurement i. Equation (2) is solved re-
peatedly using the iteratively reweighted least squares tech-
nique. The reader is referred to [14] and [5] for details on
the fitting procedure, regularization with priors, and han-
dling of outliers. Due to space limitations, only the compu-
tation of J is given here.

Computation of m′-d row vector Ji is easier when Ei is

1314

split into three composite functions

Ei(x) = E1
i (E2

i (E3
i (x))). (3)

E3
i maps from m′-d parameter space into 3-d at the ith

point, E2
i projects the 3-d point into 2-d image coordinates,

and E1
i projects 2-d point into the edge normal direction.

Given the 2 ×m′ Jacobian J2
i of E2

i ◦ E3
i , the final step is

simply Ji = niJ2
i , a linear projection with the 1 × 2 edge

normal vector ni.
Computing J2

i is more complicated because of perspec-
tive projection. Let P be the 3 × 4 homogenous projection
matrix for image formation. The rows of the Jacobian of P
evaluated at 3-d point xi are

Jxi
k =

(m!
k m3 −m!

3 mk)xi + m!
k t3 −m!

3 tk
(m3xi + t3)2

, (4)

where k = {1, 2}, and P = [M|t] with mk the row vectors
of 3× 3 submatrix M and tk the elements of vector t. Note
that Jxi is independent of xi if and only if m3 is the null
vector (i.e. P is affine). Given the 3 × m′ Jacobian J3

i of
E3

i , J2
i = JxiJ3

i .
Computation of J3

i differs depending on whether point
i is on an occluding contour or part boundary. If point i is
fixed on vertex k of the 3-d mesh then J3

i is simply the con-
catenation of Gk and the Jacobian of pose parameters. Gk

is the 3×m submatrix of G (Section 3.3) corresponding to
the 3-d mesh vertex k. The Jacobian of pose parameters is
computed in the standard way for the SE(3) Lie Group [5].
Since occluding contour points are always on mesh edges,
J3

i is a linear interpolation of the J3
k at the mesh edge end-

points. Part boundary points require barycentric linear in-
terpolation of the three J3

k at each corner of the triangle.
However, this interpolation only accounts for the part mo-
tion due to 3-d shape. Another component in the tangent
plane must be added to account for 2-d part shape deforma-
tion. The 2 × m submatrix Gj corresponding to 2-d part
vertex j provides this component in the texture space. Each
column vector of Gj is mapped into 3-d using barycentric
coordinates and added to J3

i .
Error terms from projections into multiple images can

be minimized in a single linear system by stacking the rows
of J and e. If the cameras are calibrated with respected to
each other, then a single set of vehicle pose parameters can
be used. Figure 7 shows an example of hypothesized edges
projected into multiple views before and after optimization.

5. Learning the Shape Priors
One key topic left to discuss is how to obtain the model

deformations used in Section 3.3 to construct the PCA
shape space. The template model must be deformed to ac-
curately represent a database of N known vehicles. For the
interpolated configurations to be meaningful, it is critical

Figure 7. Two of six views of hypothesized model edges projected
into images before (top) and after (bottom) fitting.

that all consistent local features be put into correspondence.
To this end, the highly detailed CAD models are used as
training data in a semi-automated algorithm for fitting both
3-d and 2-d vertices. Similar algorithms are applied sepa-
rately to learning 3-d vehicle shape and to learning 2-d part
shape. Each is addressed below.

5.1. Learning Vehicle Shape
Learning starts with a CAD model as in Figure 8(a).

The CAD model is stripped of protruding parts (side mir-
rors, spoilers, luggage racks, etc.) as these are not modeled.
Wheels are also removed and are fit separately by hand.
A simple cylindrical mesh is used with three parameters:
width, outer diameter, and inner (hubcap) diameter. The re-
maining CAD model in Figure 8(b) is used for body fitting.

Finding correct correspondence between the template
and CAD models is difficult due to large variations in shape
across vehicle classes. There is often no well defined cor-
respondence between a region in one class and another. To
bootstrap the alignment, the coarsest scale template model
is manually aligned to each CAD model to provide initial-
ization (Figure 8(c)). The manual alignment does not cover
the full degrees of freedom in the model. The initialized
vertices are automatically pulled toward the CAD model
surface like shrink wrap (Figure 8(d)).

Unlike the template mesh, the CAD models do not have
an orderly structure. They contain many disconnected
meshes of varying size and complexity. The meshes are
frequently non-manifold, self-intersected, or contain small
gaps. Disorderly meshes like these are commonly called
“polygon soup”. There is also a large variation in level
of detail between different CAD models. To handle these
problems the method Shen et al. [17] is employed to con-
struct an implicit surface from polygon soup. The implicit
surface is continuous and free of holes. It also provides a

1315

(a)

(b)

(c)

(d)

(e)

(f)(g)

Figure 8. Fitting a mesh model and mapping parts: (a) the CAD
model is (b) stripped of protuberances; (c) the template model is
(d) fitted to the CAD body; (e,f) finer scales are derived by subdi-
viding the template and refitting; (g) part boundaries are projected
from the CAD model to the template and then mapped into texture
space.

scale parameter, ε, which can be adjusted to smooth over
excessive detail and better match the resolution of the tem-
plate mesh.

To shrink-wrap the template to the CAD model, each
template vertex follows the gradient of the implicit surface
field function to the surface. Surface crossing are comput-
ing using numerical root finding—the same approach used
for ray-tracing implicit surfaces [3]. A smoothing value of
ε = 0.1m is appropriate for the initial coarse mesh. Effec-
tively, all CAD surface features of a size smaller than 0.1m
are smoothed away. The shrink-wrapped template in Fig-
ure 8(d) provides initialization for the next finer resolution.
The template is subdivided and ε is halved (doubling the
resolution in each model). Figure 8(e) shows the result after
fitting the finer mesh to the new implicit surface. This pro-
cess may be applied repeatedly to produce finer scale mod-
els (Figure 8(f)). Two levels of subdivision provide enough
detail for use in the experiments in this paper.

5.2. Learning Vehicle Parts
Once the 3-d shape has been learned, the 2-d deformable

parts are learned on that surface. Luckily the parts are typi-
cally represented as disconnected meshes in the CAD mod-
els so that they can be assigned different material proper-
ties for rendering. Taking advantage of this fact, these parts
are identified on the CAD models (shown in blue in Fig-

ure 8(a,b)) and their 3-d mesh boundaries are extracted. All
boundary points are mapped into texture coordinates by a
two step process as shown in Figure 8. First, a point on the
CAD model is projected to the closest point on the shrink
wrapped template mesh. Second, the point is mapped into
texture space using barycentric coordinates.

Parts from each CAD model are projected into the tex-
ture space by way of the corresponding mesh deformations
learned in Section 5.1. This collection of texture space con-
tours forms the training data for learning deformable parts.
Not all vehicle parts are found on all CAD models. For
PCA, missing parts are replaced by the mean part shape.

The template parts are shown in Figure 9(a). Each tem-
plate part is fit independently and automatically to the train-
ing data. Since the training parts are guaranteed to be closed
and tend to be mostly smooth, implicit functions are not
needed. Instead, shrink wrapping occurs by mapping tem-
plate points directly to the closest point on the boundary of
the training part using the dual space method of Ohtake and
Belyaev [15].

(a) (b)
Figure 9. The initialized template parts (a) are fit to parts data in
Figure 8(g) to produce the deformed template parts (b).

6. Experiments
The experiments presented here were devised to deter-

mine the optimal PCA subspace (i.e. select m) for fitting to
images and to demonstrated the fitting accuracy and range
of initial pose parameters that lead to a correct fit. In these
experiments the model was trained on a database of N = 79
CAD models. The database includes 43 four-door sedans,
11 two-door sedans, 10 SUVs, 7 minivans, 6 pickup trucks,
and 2 station wagons. The first 5 principal components ac-
count for 94% of the total variation and the first 10 account
for 98%. A series of images was collected containing vehi-
cles represented in the CAD model database. Images from
multiple viewing directions were acquired for each vehicle
and calibrated in a common world coordinate frame using
standard techniques. For ground truth, CAD models were
positioned in the coordinate frame by corresponding mesh
vertices to image points. Fitting error is computed in 3-d
as the root mean square (RMS) distance from body vertices

1316

on the fit model to the closest points on the shrink wrapped
ground truth surface.

To select m, the model is fit to images of several vehi-
cles while varying the dimensionality of the reduced param-
eter space. In these experiments, the pose parameters are
held fixed at the true values, and shape is initialized with
the ground truth mesh projected into parameter space. The
results of shape optimization are shown in Figure 10. The
error tends to decrease until the dimension reaches 5. Af-
ter 5, the error levels off and in some cases increases due to
overfitting. Hence, m = 5 is used in other experiments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25
Dodge Caravan
Dodge Stratus
Toyota 4Runner
Toyota Tundra
VW Beetle (black)
VW Beetle (yellow)
Volvo V70XC

Number (m) of Principal Components

R
M

S
Er

ro
r(

m
et

er
s)

Figure 10. Results of fitting the model to various vehicle images
and varying the number of principal components.

Figure 11 shows a typical fitting convergence result in
the 2-d subspace of X translation and Z-axis rotation (the
coordinate system aligns X with the driving direction and
Z orthogonal to the ground). The plateau indicates that the
algorithm converges to a similar low error solution for most
initial poses near the true pose. When the initial pose is
too far off, the number of edge mismatches is too high to
overcome, and the algorithm converges to an incorrect opti-
mum. In all cases, the initial shape parameters are those of
the mean vehicle. A threshold of 0.1 meters on the RMS er-
ror defines the acceptable convergence region. This region
is shown as the red, projected area in Figure 11. In the ex-
periments below, the space of initial pose is explored along
each of the six axes to estimate the approximate size of the
convergence region. Table 1 gives the results of these exper-
iments. The experiments show how error and convergence
region size are affected by vehicle class, vehicle color, num-
ber of views, and number of pose parameters (i.e. use of
a ground plane constraint). Figure 12 shows hypothesized
edges for the converged results.

All experiments in Table 1 were run initially with 6 pose
parameters. Those that failed (empty convergence region)
are not shown in the table and were run again with 3 pose
parameters. In each case, the ground plane constraint in-
duced correct convergence. The black VW Beetle did not
fail but had high error so results are shown with both 3 and
6 pose parameters (Figure 12 shows the bad result). Failure
is most likely when using only one view, when the vehicle

−2
−1

0
1

2 −60
−30

0
30

60
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

X Offset (meters) θZ
Offset (degrees)

−
R

M
S

Er
ro

r(
m

et
er

s)

Figure 11. The region of convergence shown as a plateau in the
function of (negative) RMS error. The plateau size is measured
along the pose axes. This plot corresponds to row 1 of Table 1.

shape differs significantly from the mean, or when the ve-
hicle color is very dark. The model is biased toward sedan
shapes (68% of training vehicles are sedans) giving disad-
vantage to non-sedan shapes. This bias accounts for the
spike at the tail of the Volvo wagon (there are only 2 wagons
in the training data). The shape bias and dark color account
for the very small convergence region of the black pickup.
Convergence is improved with better shape initialization.

The images in these experiments had approximately 1-3
cm per pixel resolution on vehicles, similar to what is ex-
pected in high-definition vehicle surveillance applications.
The third resolution of the vehicle mesh was used for all re-
ported results. Experiments at other image and mesh resolu-
tions showed similar results with a trade-off between fitting
accuracy and convergence region size. This trade-off war-
rants future exploration of a pyramid approach to fitting.

7. Conclusion
The experiments indicate that the proposed vehicle

model can be fit to edges in images of various vehicles. Ex-
isting methods for initialization should position a vehicle
within the regions of convergence presented in Table 1. In
[12], 3-d pose of detected toy vehicles is determined within
33.9 ± 21.74 mm and 10.7 ± 5.2◦ (the toy is roughly a
1/10 scale model). Future work will evaluate methods like
this for automatic initialization. Automatic initialization is
likely to also provide some constraints to help initialize the
shape and further expand the convergence regions. Future
work will also address bias in the model by reweighing or
providing more training data. Using the existing deformable
vehicle can reduce manual work related to initializing pa-
rameter learning for new CAD model training data.

The proposed vehicle model has potential for many uses
beyond those described in this paper. Obvious directions for

1317

Vehicle (class) Color NV NS NP Error X Y Z θX θY θZ

Dodge Stratus (sedan) white 7 5 6 0.0224 2.30 1.45 0.75 43 31 38
Dodge Stratus (sedan) white 4 5 6 0.0283 2.25 1.55 0.75 42 33 49
Dodge Stratus (sedan) white 2 5 6 0.0544 0.90 0.60 0.40 46 10 27
Dodge Stratus (sedan) white 1 5 3 0.0797 0.95 0.60 0.10 11 9 27

Dodge Caravan (minivan) white 6 5 6 0.0266 2.95 1.75 0.50 49 37 45
VW Beetle (sedan) yellow 4 5 6 0.0346 2.60 1.50 0.85 42 34 86

Toyota 4Runner (SUV) white 7 5 3 0.0356 2.50 1.90 NA NA NA 65
Volvo V70XC (wagon) blue 5 5 6 0.0493 2.15 1.60 0.65 38 25 46

VW Beetle (sedan) black 4 5 6 0.0903 2.05 1.30 0.70 52 25 52
VW Beetle (sedan) black 4 5 3 0.0340 2.10 1.20 NA NA NA 61

Toyota Tundra (pickup) black 6 5 3 0.0597 0.20 0.35 NA NA NA 4

Table 1. Experiments vary vehicle type, vehicle color, number of views (NV), number of shape parameters (NS), and number of pose
parameters (NP). Results are RMS error (meters) and width of the convergence region in X, Y, Z (meters) and θX , θY , θZ (degrees).

Dodge Stratus Dodge Caravan VW Beetle Toyota 4Runner Volvo V70XC VW Beetle Toyota Tundra
Figure 12. Edge hypotheses for converged results for the first instance of each vehicle in Table 1 shown from one of the views. Examples
are loosely ordered in increasing order of difficulty (left to right).

future work include recognition from recovered parameters
and tracking vehicles in video while estimating shape. The
power of the model goes beyond edge prediction. Since
parts are regions, a statistical model of intensity or color
could be learned within the regions. Such a model could
constrain the polarity of edge matches. Finally, since the
vehicle model has a 3-d surface, it can also hypothesize ef-
fects of lighting such as cast shadows, surface shading, and
specular highlights.

References
[1] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and

J. Davis. Scape: Shape completion and animation of people. ACM
Trans. Gr., 24(3):408–416, 2005.

[2] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d
faces. In Proceedings of ACM SIGGRAPH 1999, pages 187–194.
ACM Press, 1999.

[3] J. F. Blinn. A generalization of algebraic surface drawing. ACM
Trans. Graph., 1(3):235–256, 1982.

[4] E. Catmull and J. Clark. Recursively generated b-spline surfaces on
arbitrary topological surfaces. Computer-Aided Design, 10(6):350–
355, 1978.

[5] T. Drummond and R. Cipolla. Real-time visual tracking of complex
structures. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 24(7):932–946, Jul 2002.

[6] J. M. Ferryman, A. D. Worrall, G. D. Sullivan, and K. D. Baker. A
generic deformable model for vehicle recognition. In Proceedings
of the British Machine Vision Converence (BMVC), volume 1, pages
127–136, Surrey, UK, UK, 1995. BMVA Press.

[7] N. Ghosh and B. Bhanu. Incremental vehicle 3-d modeling from
video. In International Conference on Pattern Recognition (ICPR),
volume 3, pages 272–275, 2006.

[8] Y. Guo, C. Rao, S. Samarasekera, J. Kim, R. Kumar, and H. Sawhney.
Matching vehicles under large pose transformations using approxi-

mate 3d models and piecewise mrf model. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–8, June
2008.

[9] Z. Kim and J. Malik. Fast vehicle detection with probabilistic feature
grouping and its application to vehicle tracking. In International
Conference on Computer Vision (ICCV), volume 1, pages 524–531,
October 2003.

[10] D. Koller, K. Daniilidis, and H. Nagel. Model-based object tracking
in monocular image sequences of road traffic scenes. International
Journal of Computer Vision, 10(3):257–281, June 1993.

[11] M. Leotta and J. Mundy. Learning background and shadow appear-
ance with 3-d vehicle models. In Proceedings of the British Machine
Vision Converence (BMVC), volume 2, pages 649–658, September
2006.

[12] J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-independent ob-
ject class detection using 3d feature maps. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–8, June
2008.

[13] J. Lou, T. Tan, W. Hu, H. Yang, and S. Maybank. 3-d model-based
vehicle tracking. IEEE Trans. on Image Processing, 14(10):1561–
1569, October 2005.

[14] D. Lowe. Fitting parameterized three-dimensional models to images.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
13(5):441–450, May 1991.

[15] Y. Ohtake and A. G. Belyaev. Dual/primal mesh optimization for
polygonized implicit surfaces. In Symposium on Solid modeling and
applications (SMA), pages 171–178, New York, NY, USA, 2002.
ACM.

[16] J. Schick and E. Dickmanns. Simultaneous estimation of 3d shape
and motion of objects by computer vision. In Proceedings of the
IEEE Workshop on Visual Motion, pages 256–261, Oct 1991.

[17] C. Shen, J. F. O’Brien, and J. R. Shewchuk. Interpolating and ap-
proximating implicit surfaces from polygon soup. In Proceedings of
ACM SIGGRAPH 2004, pages 896–904. ACM Press, Aug. 2004.

[18] X. Song and R. Nevatia. A model-based vehicle segmentation
method for tracking. In IEEE International Conference on Computer
Vision (ICCV), volume 2, pages 1124–1131, October 2005.

1318

