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Abstract

We propose a geometric method for visual tracking, in
which the 2-D affine motion of a given object template
is estimated in a video sequence by means of coordinate-
invariant particle filtering on the 2-D affine group Aff(2).
Tracking performance is further enhanced through a geo-
metrically defined optimal importance function, obtained
explicitly via Taylor expansion of a principal component
analysis based measurement function on Aff(2). The effi-
ciency of our approach to tracking is demonstrated via com-
parative experiments.

1. Introduction

Visual tracking is one of the most fundamental tasks re-
quired for advanced vision-based applications such as vi-
sual surveillance and vision-based human-robot interaction.
In this paper we address the problem of tracking a given ob-
ject template such as the one shown in Figure 1(a). Tracking
such object templates using only 2-D translations is gen-
erally difficult, since the object image typically undergoes
(under mild assumptions) a 2-D affine transformation. The
aim of this paper is to propose a novel geometric framework
that can efficiently track such 2-D affine motions of the ob-
ject image.

Following the seminal work of Isard and Blake [6], var-
ious kinds of visual tracking problems have been addressed
using particle filtering, which is a Monte Carlo method for
general nonlinear filtering problems (see, e.g., [25] and the
references cited therein). The common approach to parti-
cle filtering-based affine motion tracking is to represent the
affine transformation in vector form using a set of local co-
ordinates, and to make use of conventional particle filtering
algorithms formulated on vector spaces [12, 16, 26].

It is, however, well-known that the set of affine trans-
formations is not a vector space, but rather a curved space

978-1-4244-3991-1/09/$25.00 ©2009 IEEE

Kyoung Mu Lee
Department of EECS, ASRI
Seoul National University
Seoul 151-742, Korea

kyoungmu@snu.ac.kr

Frank C. Park
School of MAE
Seoul National University
Seoul 151-742, Korea

fcp@snu.ac.kr

Figure 1. (a) The rectangle represents the object template given
in the initial frame. (b) 2-D affine motion tracking (yellow) vs 2-
D translation tracking (red). In this paper, the 2-D affine motion
tracking is formulated as the filtering on the affine group Aff(2).

possessing the structure of a Lie group (the affine group).
Choosing a set of local coordinates and applying existing
vector space methods will more often than not produce re-
sults that depend on the choice of local coordinates. More
fundamentally, the performance of such local coordinate-
based approaches depends to a large extent on whether the
geometry of the underlying space is properly taken into
account, especially around the extremes of the operating
regime.

Given these considerations, we regard the 2-D affine mo-
tion tracking as a filtering problem on Aff(2). The approach
that we set forth here is based on [10], in which visual track-
ing is realized via particle filtering on Aff(2) with the geo-
metrically well-defined state equation on Aff(2) and other
related geometric necessities. (See [3, 9, 20, 21] for parti-
cle filtering on other Lie groups, e.g., the special orthogonal
group SO(3) and special Euclidean group SE(3).)

One of the crucial factors in the performance of par-
ticle filtering is how to choose the importance function,
from which particles are randomly sampled [4]. There have
been several attempts to approximate the optimal impor-
tance function as closely as possible instead of importance
sampling from the state prediction density, because most
of the particles sampled from the state prediction density
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are wasted especially when the state dynamics model is in-
accurate and the measurement likelihood is highly peaked
[4, 14, 22]. The need for an optimal importance function for
particle filtering-based visual tracking is quite evident: the
object can make an abrupt movement not predictable via a
general smooth motion model, and many robust appearance
models are currently available.

Our paper’s main contribution is to derive such an opti-
mal importance function for particle filtering on Aff(2). We
approximate the optimal importance function following the
normal distribution approach outlined in [4], in which the
normal distribution is determined via first-order Taylor ex-
pansion of a nonlinear measurement function with respect
to the state. For our purposes we utilize the exponential map
to formulate an approximate normal distribution on Aff(2)
and realize the Taylor expansion of a measurement function
whose input argument is Aff(2). We then show how the Ja-
cobian of a principal component analysis (PCA) based mea-
surement function can be analytically derived via a simple
application of the chain rule.

There is much literature on particle filtering-based visual
trackers to approximate the optimal importance function via
local linearization of a measurement function [11, 17, 19].
The difference of these from our approach is that the un-
scented transformation (UT), which is generally recognized
as more efficient and accurate than the first-order Taylor ex-
pansion [7], is used as a means of local linearization. In this
paper, we rely on the Taylor expansion instead of UT for the
following reasons. First, UT has tuning parameters whose
values must be determined appropriately depending on the
application. We believe that it is difficult to find a system-
atic way to choose such parameter values appropriately for
our case, where the measurement function is highly non-
linear with respect to the state and the state itself is also a
curved space. Moreover, UT involves repeated trials of the
measurement process, e.g., at least thirteen times for our
case where the dimension of the affine state is six. There-
fore such repeated trials would eliminate the advantage of
UT in the case of a complex measurement function.

The remainder of the paper is organized as follows. In
Section 2, the visual tracking framework via particle filter-
ing on Aff(2) proposed in [10] is briefly reviewed, with an
emphasis on the geometric requirements to perform parti-
cle filtering on Aff(2). In Section 3, the optimal importance
function is derived via analytic first-order Taylor expansion
on Aff(2) of the PCA-based measurement function. In Sec-
tion 4, we present experimental results demonstrating the
feasibility of our proposed visual tracking framework, while
Section 5 concludes with a summary.

2. Visual tracking on the affine group

As aforementioned, we deal with the problem of track-
ing the 2-D affine motion of an object template as shown
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Figure 2. The geometric transformation modes induced by basis
elements E; of aff(2). The general affine transformation comes
from a combination of these transformation modes.

in Figure 1. The 2-D affine transformation of the object
template coordinates is realized via multiplication in the ho-
mogeneous coordinates with a matrix [§ ¢], where G is an
invertible 2 x 2 real matrix and ¢ is a R? translation vector.
The matrix [§ ¢] can be identified as a matrix Lie group and
is called the 2-D affine group (Aff(2)). In this section, we
briefly review the visual tracking framework of [10], which

is primarily based on particle filtering on Aff(2).

2.1. Particle filtering on the affine group

A Lie group G is a group which is a differentiable
manifold with smooth product and inverse group opera-
tions. The Lie algebra g associated with G is identified
as a tangent vector space at the identity element of G. A
Lie group G and its Lie algebra g can be related via the
exponential map, exp : g — G. The 2-D affine group
Aff(2), that is the semi-direct product of GL(2) (2 x 2
invertible real matrices) and R2, is associated with its Lie
algebra aff (2) represented as [ Y ¢] where U € gl(2) (gl(2),
which is the space of real 2 x 2 matrices, denotes the Lie
algebra of GL(2)) and v € R?. A detailed description of
Lie groups can be found in, e.g., [5].

State equation on the affine group. The geometrically
well-defined state equation on Aff(2) for a left-invariant sys-
tem can be expressed as

6
dX = X AX)dt+ XY bi(X)E;dw;, (1)
=1

where X € Aff(2) is the state, the maps A : Af(2) — aff(2)
and b; : Aff(2) — R are possibly nonlinear, dw; € R denote
the Wiener process noise, and F; are the basis elements of
aff (2) chosen as
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Each geometric transformation mode corresponds to each
E; as shown in Figure 2.
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The continuous state equation (1) is usually discretized
via the first-order exponential Euler discretization as

Xi = Xp_1 - exp (A(X,t)At n de\/At) )

where dW, represents the Wiener process noise on aff(2)
with a covariance P € R6*6 j.¢e., dW}, = E?:l €x,i B; with
a six-dimensional Gaussian noise €; = (€1, ..,€kq)
sampled from N (0, P). Then the measurement equation
can also be expressed in the discrete setting as

Yk = 9(Xk) + ng, 4

where g : X — RNy is a nonlinear function and ny, is
a Gaussian noise with a covariance R € RM>*Nv, e,
ng ~ ZV(O7 R).

Sample mean on the affine group. Since the optimal state
estimation X, is given by the weighted sample mean of
particles {X ,il), X ,iN)}, an appropriate formula to cal-
culate the sample mean on Aff(2) is additionally required.
Here we concentrate on the sample mean of GL(2) because
that of ¢ € R? is trivially obtained. Given a set of GL(2)
elements {G1, ..., Gy}, their intrinsic mean G is defined

as
N

arg min Z
GeGL(2) ;1

d(G,G;)?, Q)

where d(-, -) represents the geodesic distance between two
GL(2) elements. Calculating the sample mean defined as
(5) involves a difficult and computationally intensive opti-
mization procedure, however.

Instead we can efficiently approximate the sample mean
of GL(2) elements using the fact that minimal geodesics
near the identity are given by the left and right translations
of the one-parameter subgroups of the form €'V, U € gl(2),
t € R. Moreover, if we resample the particles according to
their weights at every time-step, all the resampled particles
can be expected to be quite similar to each other. Thus the
sample mean of {G,(:), ce G,E,N)}, GL(2) components of

the resampled particles X ,ii) , can be approximated as

Gk = Gk’,max + €xXp (Uk) ) (6)
N

7 1 —1 ()

O = ~ ;:1: log (GrhaGL) (7)

where G max denotes GL(2) part of the particle possess-
ing the greatest weight before resampling. Then, the sam-
ple mean of {X ,E,z), . ¢ ,iN)} can be readily obtained as
[ G t_lk |, where ¢, € R? is the arithmetic mean of ¢.

2.2. Visual tracking via particle filtering on the
affine group

We assume that the initial object template is automati-
cally given as shown in Figure 1(a). Then the aim of track-

ing here is to estimate X, representing the 2-D affine trans-
formation of the object template in the k-th frame with re-
spect to the 2-D image coordinates placed at the center of
the object template in the initial frame (see Figure 1). Such
a visual tracking task can be managed by the particle filter-
ing procedure on Aff(2) described so far.

The term A(X,?) € aff(2) in (3) can be understood
as the state dynamics determining the particle propagation.
The simplest choice for the state dynamics is a random walk
model, i.e., A(X,t) = 0. The random walk model can be
effective provided a sufficiently large number of particles
are used, and the covariance P in (3) is sufficiently large.
However, a more effective way to enhance tracking perfor-
mance is to use a more appropriate state dynamics.

Here the state dynamics is modeled via the first-order
autoregressive (AR) process on Aff(2). The state equation
with the state dynamics based on the AR process on Aff(2)
can be expressed as

X, =
A1 =

Xk—1-exp (Ak—l + de\/E) , (8
alog (X, ', X5-1), )

where a is the AR process parameter. Since it is not possi-
ble to compute A,(j) from X ,il) and X 121)1 at the k-th time-
step owing to the resampling process, the state is augmented
as { Xy, A} in practice. This AR-based state dynamics
model can be understood as an infinitesimal constant ve-
locity model.

Visual tracking on Aff(2) can now be efficiently per-
formed via particle filtering with the AR-based state equa-
tion ((8) and (9)) and the appropriate measurement equation
(4) depending on the appearance model employed.

3. Tracking using optimal importance function

The particle filtering algorithm mainly relies on the im-
portance sampling [4]. The particles X ,E,z) are sampled
from the importance function 7 (X}, |Xé?,)€_1, Yo:k); and the

weights w,(:) for Xél,)C are evaluated as

G () P(Yk |X18))P(X18) |X151_)1)
We' = Wk GIP0) (10)
T(-(Xk |X0;k_17 yO:k)
The most popular choice for m(X|Xo.x—1, yx) is the state
prediction density p(X|X;_1) because the weights are
simply determined proportionally to the measurement like-
lihood p(yx|X«). Since information about recent measure-
ments y, are not incorporated in p(Xy|Xj_1), reliable per-
formance cannot be expected when applied to visual track-
ing as mentioned in Section 1.
In [4], the optimal importance function minimizing the
variance of particle weights (and eventually maintaining the
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number of effective particles as large as possible) is given
by p(X|Xk—1,yx). In this case, the particle weight calcu-
lation (10) generally cannot be derived analytically, one ex-
ception being the well-known case of Gaussian state space
models with linear measurement equations.

For our tracking problem, since the pixel intensities of
the image region determined by X}, is generally nonlinear
in X}, yi is also nonlinear in X, regardless of the form
of the measurement function. Therefore, the use of the op-
timal importance function for our tracking problem gener-
ally results in an infeasible particle weight calculation. As
a remedy for the nonlinear measurement case, an optimal
importance function approximated via local linearization of
the measurement function is proposed in [4].

3.1. Optimal importance function approximation

General vector space case. We first consider the following
general nonlinear vector state space model:

vy = f(xr-1)+ wg, (11)
ye = g(or) + n, (12)

where z;, € RN+, vy, € Ry, and wy, and ny, are Gaussian
noise with covariances P € RV=*Ne and R € RNv* Ny,
respectively.

The basic assumption in approximating p(xy|zr—1, yk)
is p(zk, yk|TK—1) is jointly Gaussian [18]. If the mean
and covariance ¥ of p(xy, yx|zr—1) are given by

= (w1, p2)" = [E(@iler—1), E(yelze—1)] T (13)
5w ( Y11 E12>
(T12) T Yoo
_ ( E(zgay [wr-1) E(fﬁkyﬂxk—l)) (14)
E(ziyl lze-1)"  Elyeyy lzi—1) )7

then p(zy|xk—1, yx) can be approximated as N (my, Xy in-
corporating the recent measurement y, where

mr = 1+ S12(Z22) Hyk — p2), (15)
Y o= Ui D19(Te2) (i) " (16)

In [4], the approximated mean ji and covariance 3 of
p(ok, yr|Tp—1) are given by

o= [flee-1),9(f(xr-1))]", (17)
P PJT
= (JP JPJT+R>’ (18)

where J € RVv*Ne represents the Jacobian of g(z)) with
respect to , evaluated at f(z,—1), i.e., yr =~ g(f(zr—1))+
J - (xr — f(xk—1)) + ng. Then p(zx|r—_1,yx) is approx-
imated as N (my, Xx) via (15) and (16) with (17) and (18).
Particles are sampled from the derived normal distribution
N (myg, Xy) and weighted via (10).

M@

The affine group case. Note that the above normal distri-
bution approximation approach should be performed geo-
metrically in our visual tracking problem because the state
is not a vector but an affine matrix. Therefore, the notions
of normal distribution and Taylor expansion on Aff(2) need
to be clarified.

For our purposes, we make use of the exponential map
on Aff(2) which, as is well-known, locally defines a dif-
feomorphism between a neighborhood of Aff(2) containing
the identity, and an open set of the Lie algebra aff{2) cen-
tered at the origin, i.e., given X € Aff(2) sufficiently near
the identity, the exponential map X = eXP(Z?:1 u; E;),
where F; are the basis elements of aff(2) shown in (2), is
a local diffeomorphism. This local exponential coordinates
can be extended to cover the entire group by left or right
multiplication, e.g., the neighborhood of any Y € Aff(2)
can be well defined as Y (u) = Y -exp (Z?zl quz) in our
case. Recall also that in a neighborhood of the identity, the
minimal geodesics are given by precisely these exponential
trajectories.

The normal distribution on Aff(2) is then obtained as the
exponential of a normal distribution on aff (2) (where well-
defined), provided that the covariance values are sufficiently
small to guarantee the local diffeomorphism of the exponen-
tial map. Let Nyg2) (X, ) denote the approximated normal
distribution on Aff(2) centered at X € Aff(2) with a covari-
ance S € R6*6 for the normal distribution on aff(2). Then
the random sampling from Nz 2 (X, S) can be realized via
the exponential mapping of the Gaussian noise on aff(2) as

6
X - exp(z € F;),e=(e1,...

i=1

e6)| ~ N(0,5). (19)

It can be assumed that the covariance value for the
Wiener noise dWy, in (8) is rather small because the frame-
rate is generally sufficiently high enough (between 30 and
60 fps, and at least 15 fps) for the object motion between ad-
jacent frames to be well described by our AR process-based
dynamics and small covariance value for dW}, as long as
the object movement is not abrupt. With a small P for dWj,
in (8), the following approximation to (8) can be considered
as valid:

Xy ~ f(Xp_1) - exp(dWpVAL), (20)

where f(Xk—1) = Xk—1 - exp(Ag_1). Then p(Xy|Xx_1)
can be approximated as Nygo) (f(Xr—1), @), where Q =
PAt. Accordingly, ji1, jt2, and 317 in (13) and (14) are
given by f(Xx_1), g(f(Xk—1)), and Q, respectively.

For a unimodular Lie group such as SO(3) and SE(3), itis
shown in [24] that tightly concentrated distributions around
the group identity element are essentially the distributions
on its Lie algebra. Thus the normal distribution on, e.g.,
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SE(3) can be identified via the exponential map with those
on se(3), the Lie algebra of SE(3), in a similar way to our
approximation. Unfortunately, such a notion for concen-
trated distributions does not hold for Aff(2), because Aff(2)
is not connected, and accordingly not unimodular. In such
cases one should attempt to at least verify, either analyti-
cally or experimentally, whether or not Nyg2) (X, S) pos-
sesses the general properties of normal distributions; here
we defer such verification to future work.

Now we focus on the Taylor expansion of a measure-
ment function g on Aff(2) required to obtain the remaining
312 and Y99 in (14) as (18). We can again make use of the
exponential mapping on Aff{(2). Representing the neighbor-
hood of f(Xx—_1) as X (u) using the exponential map, i.e.,

X(u) = f(Xg-1)-exp (Ele ulEl) , the first-order Taylor

expansion of g around f(X}_1) can be expressed as
e~ g(f(Xik=1)) + J - u + ng, (21)

where J € RV4*6 is the Jacobian of g(X (u)) with respect
to u evaluated at u = 0, i.e., f(X;_1). Then X125 and Yoo
are respectively given by Q.J " and JQJ " + R as (18). The
exponential coordinate-based approach to obtain the Taylor
expansion of a function on general Lie groups can also be
found in the literature on gradient and Hessian-based opti-
mization methods on Lie groups [13],[23].

Finally, the optimal importance function can be approxi-
mated as Nygo) (ms, Xy) by rewriting (15) and (16) as

= Y12(Z92) Mk — p2), (22)
6

mE = g exp <ZuE> (23)
=1

Y o= Y- Y1a(Te2) (i), (24)

where 111 = f(Xp-1), po = g(f(Xp-1)), X1 = Q.
Yo =QJ",and X9o = JQJ " + R as previously derived.

3.2. Analytic Jacobian derivation via a chain rule

For the sake of an analytic Jacobian derivation, we bor-
row the expressions about the image region determined
by X from [1]. The warping function w(p; X)) repre-
sents the affine transformation of pixel coordinates p =
(pz, py) Of the initial object template induced by Xy, i.e.,
w(p; Xi) = Xk - p in the homogeneous coordinates. Then
let I(w(p; Xi)) represent the image region in the current
video frame, which is determined by X}, transforming the
pixel coordinates of the object template and warped back to
the initial pixel coordinates. Then the measurement equa-
tion (4) can be more explicitly expressed as

yr = 9(X) + nx = h(I(w(p; Xi))) + n, (25)

where h is a real-valued nonlinear function taking an image
as an input argument. The only constraint for A is that it

should be differentiable with respect to its input argument in
order that one may obtain an analytic Jacobian of g(X (u)).
Now the analytic Jacobian .J of g(X (u)) with respect to u
evaluated at u = 0 can be obtained via a chain rule as

9g9(X (u)) _ On(I(w(p; Xk)))
oui g oI (w(p; X))

I(wlp: X)) dwlp: Xi) | 0X(u)
ow(p; Xi) 0X}. Ou;

Ji

(26)
u=0
where J; is the i-th column of J corresponding to u;, and
X, represents f(Xj_1) for concise expression.

The first term W surely depends on the

choice of h; its analytic form for the measurement function
based on the principal component analysis (PCA) is derived
in the next subsection. The second term %
responds to the image gradient VI calculated at the pixel
coordinates on the current video frame and warped back to
the object template coordinates. The third term %;f’“)
can be obtained via differentiation of the transformed pixel

coordinates with respect to a vector ay, = {ar1,...,ak,6}
I ag,1 Ak,3 QK5 X .
constituting X as {alaz al(c),4 akfﬁ}; the result is simply

[pg' p(l Py p(?y . (1)} Finally, the last term can be easily com-

cor-

puted as

0X (u)
8’(1;1'

00Xk ~exp(D_,; uiEy)

= X.E;. (27)
u=0 8u1

u=0

Note that X F; should also be represented in a % vector
£ OwpiXk)

as ay, for consistency with the representation of —53

3.3. PCA-based measurement function

The measurement function A is directly related with the
object appearance model. In our framework, we adopt the
PCA-based appearance model whose applicability to object
tracking beyond classical object recognition has been pre-
viously shown in [2, 8]. Since we assume that the training
data are not available a priori, the principal eigenvectors
and object mean are updated during tracking via the incre-
mental PCA learning algorithm in [16]. The specific al-
gorithm for the incremental PCA learning can be found in
[16]. In the remaining part of this paper, I(p) is often used
instead of I(w(p; X)) without notification for concise ex-
pression when there is no confusion.

Let T'(p) and b;(p),i = 1,..., M, respectively denote
the mean and first M principal eigenvectors which are in-
crementally updated from the set of the tracked object im-
ages determined by the optimal state estimation Xo.5. Then
the reconstruction error e for I(p) can be expressed as

M
=3 (1) ~Tw)" -y . (28)
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where ¢; are the projection coefficients of the mean-
normalized image to each principal eigenvector b;(p), i.e.,
¢i = Y, bi(p)(I(p) — T(p)). In the probabilistic PCA
framework of [15], this error is understood as the “distance-
from-feature-space” (DFFS) representing how much the
warped image I(p) differs from the object image repre-
sented by T(p) and b;(p) while the “distance-in-feature-
space” (DIFS) is defined as the Mahalanobis distance, i.e.,

Zi]\il f\—Q where )\; are the eigenvalues for b;(p).
With the PCA-based appearance model, the measure-
ment function A can be defined using the DFFS and DIFS as
2
h(I(p)) = (e, wal i )T € R2. Then the measurement
equation (25) can be expllcltly expressed as

62
2

M c;
Dim1 %
where n, ~ N(0,R),R = [¢ 9] € R**2. Correspond-

0
ingly, the measurement likelihood can be calculated as

yr = h(I(w(p; Xi))) +np = l +ng, (29)

P(yr| Xk) o exp (——yk R yk) (30)

The derivative of the DFFS term of h(I(p)) with respect
to I(p) can be straightforwardly derived as

9 M
G - L) T —Zacizbzv(p)

> (2(1( 22@ i ><3l>

p

The derivative of the DIFS term of h(I(p)) with respect to
1(p) can also be derived similarly as

azz 1 = 2¢;
ORDS <Z X )> 32

P i=1

Then the overall Jacobian .J is obtained via plugging (31)
and (32) into (26) appropriately.

In the initial phase before the minimum number of
tracked object images required to perform PCA is col-
lected, the measurement function h becomes the SSD be-
tween I(p) and the initial object template T'(p), i.e., h =
>, (L(p) — T(p))%; and its derivative is simply given by
>, 2(I(p) — T'(p)). The overall algorithm of our visual
tracking framework via particle filtering on Aff(2) using an
optimal importance function is shown in Algorithm 1.

4. Experiments

4.1. Experiment 1

We first demonstrate the validity of our geometric ap-
proach to the 2-D affine motion tracking problem via com-
parison with the tracker of [16], which is considered to be

Algorithm 1 Overall algorithm

1. Intialization
a.Setk=0,l=0.
b. Set lupdate for the incremental PCA.
c¢. Set number of particles as N.
d.Fori=1,...,N,set X\? =1, Ay’ =0
2. Importance sampling step
a.Setk=k+1,1=10+41.
b. Fori=1,..., N, draw X,i*i) ~ p(XHX,in,yk), ie.,
— Calculate J@ of g(X (u)) at f(X,ii)l)
— Determine m(i) and E(i) via (22), (23), and (24).
~Draw X" ~ NA,/( H(m{, 29 via (19).

— Compute A ) with 9).
c. Fori =1,..., N, calculate the weights w ) via (10).
( )
d. Fort =1,..., N, normalize the weights: w(z) = W
j w

3. Selection step (resampling)

a. Resample from X ,g*i) and A,(:i) according to 11'),(;) to
produce i.i.d. X\ and A'".
b.Fori=1,...,N, setw,?) = 11'1,(:) = 4.

¢. If I = lypdate, update T'(p) and b;(p), and set | = 0
4. Go to the importance sampling step

one of the state-of-the-art particle filtering-based affine mo-
tion trackers. In [16], the state is represented by a 6-D
vector using a set of local coordinates. Since we use the
same appearance model as that of [16], it can be verified
how much the state representation affects the overall per-
formance. For fair comparison, instead of using the optimal
importance function derived in Section 3, we run our tracker
using the same importance function as the one used in [16],
i.e., the state prediction density. The number of particles
used is 600.

The video sequences used for comparison include the
“David”, “Trellis”, and “Sylvester” sequences used in [16];
and the tracking results are shown in Figure 3!. We can
see that both trackers yield almost the same performance
for the “David” and “Trellis” sequences. The tracker of
[16], however, fails to track the object at the latter part of
the “Sylvester” sequence owing to the abrupt object pose
and illumination changes, while our tracker tracks the ob-
ject well. Therefore it is fair to say that the tracking results
in Figure 3 are one of the proofs of the validity of our geo-
metric approach to the 2-D affine motion tracking.

4.2. Experiment 2

We next examine the effectiveness of the use of the opti-
mal importance function derived in Section 3. We compare
the tracking results, which are obtained by our trackers us-

I'The video containing all the tracking results shown in Section 4 is
available at http://cv.snu.ac.kr/jhkwon/tracking/.
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Figure 3. The tracking results for “David” (top row), “Trellis”
(middle row), and “Sylvester” (bottom row), by our tracker (yel-
low rectangle) and the tracker of [16] (red rectangle).

ing two importance functions, i.e., the optimal importance
function and the state prediction density. Both trackers run
with the same number of particles (400) and the same co-
variance P for the Wiener noise on aff (2).

The test video sequences are the “Cube”, “Vase”, and
“Toy” sequences containing the 2-D affine motion of the
object template, which is occasionally difficult to predict
correctly via the state dynamics model with smooth motion
assumption. Since our AR-based dynamics model also as-
sumes smooth motion between infinitesimal time intervals,
the need for an optimal importance function instead of state
prediction density for such sequences is clear.

The tracking results are shown in Figure 4. For the
“Cube” and “Vase” sequences, the accuracy of the state pre-
diction density-based tracker is degraded especially when
the object makes an abrupt movement. The tracker using
the optimal importance function, however, tracks the object
quite accurately over all the frames regardless of the abrupt
motion change. For the “Toy” sequences, which can be re-
garded as the most difficult one, the tracker using the op-
timal importance function also tracks the object well while
the state prediction density-based tracker loses the object
entirely during tracking.

The efficiency of both trackers can also be compared in
terms of the number of effective particles Ng, which is
defined as [Zivzl(lb,(;))ﬂ’l [4]. It can be easily checked
that N.g varies between one (in the worst case) and N (in
the ideal case). Figure 5 shows the plots of Nk for the
“Cube” sequence over all the frames. We can see that N of
the tracker using the optimal importance function is greater
than that of the state prediction density-based tracker over
almost all the frames; the consequence is the superior per-
formance of the tracker using the optimal importance func-
tion as shown in Figure 4.

Table 1 shows N, the averages of N over all the

Time—step

Figure 5. Plots of Nest for the “Cube” sequence. The blue and red
lines respectively represent the cases using the optimal importance
function and state prediction density as the importance function.

| Importance function | Cube | Vase | Toy |

Optimal importance function | 43.43 | 13.69 | 15.69
State prediction density 18.12 | 8.37 | 10.32

Table 1. Net, the averages of Neg over all the frames.

frames, for each sequence. For all the sequences, we can
see that N of the tracker using the optimal importance
function is consistently greater than that of the state predic-
tion density-based tracker. Note that, when a tracker fails to
localize the object correctly, Neg may not represent the ac-
tual tracking performance well because N.g may increase
in such a situation owing to a possibility that many parti-
cles have similar weights with very low value. Therefore,
for the “Toy” sequence, N, is calculated only over the first
130 frames before the tracking accuracy of the state predic-
tion density-based tracker becomes much worse.

From these results, we can conclude that the optimal
importance function derived for our geometric framework
actually enhances the visual tracking performance in situa-
tions where the tracking may fail if the state prediction den-
sity were used as the importance function.

5. Conclusions

In this paper, we have proposed a novel geometric frame-
work to efficiently solve the 2-D affine motion tracking
problem. In our framework, the 2-D affine motion is basi-
cally recast as the sequential filtering problem on the affine
group Aff(2), which is a matrix Lie group representing a
set of 2-D affine transformations. The optimal importance
function required to enhance the filtering performance has
been geometrically derived for the affine group via the first-
order Taylor expansion of a measurement function on Aff'(2)
with careful clarification of notions of the neighborhood
and normal distribution on Aff(2). We have also derived
the Jacobian of a PCA-based measurement function whose
input argument is Aff(2) analytically via a chain rule. The
feasibility of our proposed framework has been effectively
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Figure 4. The tracking results for “Cube” (top row), “Vase” (middle ro

3 4

w), and “Toy” (bottom row), by our trackers, respectively, using the

optimal importance function (yellow rectangle) and the state prediction density (red rectangle) as the importance function.

demonstrated via comparative experimental studies.
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