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Abstract

We present a system for the estimation of unconstrained

3D human upper body movement from multiple cameras.

Its main novelty lies in the integration of three components:

single-frame pose recovery, temporal integration and model

adaptation. Single-frame pose recovery consists of a hy-

pothesis generation stage, where candidate 3D poses are

generated based on hierarchical shape matching in the in-

dividual camera views. In the subsequent hypothesis ver-

ification stage, candidate 3D poses are re-projected to the

other camera views and ranked according to a multi-view

matching score.

Temporal integration consists of computing best trajec-

tories combining a motion model and observations in a

Viterbi-style maximum likelihood approach. Poses that lie

on the best trajectories are used to generate and adapt a

texture model, which in turn enriches the shape component

used for pose recovery. We demonstrate that our approach

outperforms the state-of-the-art in experiments with large

and challenging real-world data from an outdoor setting.

The new data set is made public to facilitate benchmarking.

1. Introduction

The recovery of 3D human pose is an important problem

in computer vision with many potential applications in ani-

mation, interactive games, motion analysis (sports, medical)

and surveillance. 3D pose also provides meaningful, view-

invariant features for a subsequent activity recognition step.

Despite the considerable advances that have been made over

the past years (see next Section), the problem of 3D human

pose recovery remains essentially unsolved. The challenges

involve estimating articulated motion of bodies of which the

exact proportions are not known in advance, dealing with

the underconstrained nature of the problem due to loss of

depth information and/or (self) occlusion, and performing

foreground-background segmentation.

This paper presents a multi-camera system for the esti-

mation of 3D human upper body movement which specifi-

cally addresses the combination of single-frame pose recov-

ery, temporal integration and model adaptation. See Fig-

ure 1. Using input from three calibrated cameras, we are

able to handle arbitrary movement (i.e. not limited to walk-

ing and running) in cluttered scenes with non-stationary

backgrounds. We do not require particular initial poses to

jumpstart the system. A further appealing aspect of the sys-

tem is that, for single-frame pose recovery, the computa-

tional burden is shifted as much as possible to the off-line

stage, so that on-line processing is optimized. Algorith-

mic complexity is sub-linear in the number of body poses

considered as a result of a hierarchical representation and

matching scheme. Moreover, by fusing information be-

tween cameras at the pose parameter level rather than at the

feature level, inherent parallelism is increased.

The proposed system also has some limitations. Like

previous 3D pose recovery systems, it currently cannot han-

dle a sizable amount of external occlusion. It furthermore

assumes the existence of a 3D human model that roughly

fits the person in the scene (we are able to use the same

generic model for different persons in the experiments).

2. Previous work

There is meanwhile a very extensive literature on 3D hu-

man pose estimation. Space limitations force us to make a

selection which we consider is most relevant to this paper.

For a more exhaustive listing, see recent surveys [9, 22].

One line of research has focused on 3D model-based

tracking; i.e. given a reasonably accurate 3D human model

and an initial 3D pose, predict the pose at the next time

step using a particular dynamical and observation model

[5, 7, 8, 11, 13, 25, 30, 35, 36, 37]. Multi-hypothesis ap-

proaches based on particle filtering [5, 7, 25, 37] or non-

parametric belief propagation [33] are used for increased
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Figure 1. System overview. For details, please refer to the text, Section 3.1.

robustness. However, the high dimensionality of the pose

parameter space necessitates researchers to employ strong

motion priors (i.e. known action classes such as walking,

running) and/or various sequential sampling techniques. In

practice, tracking soon goes astray if no recovery mecha-

nism is added.

Another line of research has dealt with 3D pose initial-

ization. Work in this category can be distinguished by the

number of cameras used. Multi-camera systems for 3D pose

initialization were so far applied in controlled indoor envi-

ronment. The near-perfect foreground segmentation result-

ing from the stationary background, together with the many

cameras used (> 5), allows to recover pose by Shape-from-

Silhouette techniques [6, 15, 21, 34].

Single camera systems for 3D pose initialization can be

sub-divided whether they use generative or learning-based

approaches. Learning-based approaches construct a map-

ping between 3D pose and 2D image observables using ma-

chine learning techniques [1, 3, 14, 32]. These approaches

are conceptually appealing and fast, but questions still re-

main regarding their scalability to arbitrary poses. Cer-

tainly, a large number of examples would be needed in that

case to allow for successful regression, given the ill condi-

tioning and high dimensionality of the problem (most ex-

perimental results involve restricted movements, i.e. walk-

ing). Furthermore, learning-based approaches tend to rely

on good foreground segmentation.

On the other hand, pose initialization using 3D gener-

ative models [17, 19] involves finding the best match be-

tween model projections and image, and retrieving the as-

sociated 3D pose. Pose initialization using 2D generative

models [23, 28] involves a 2D pose recovery step followed

by a 3D inference step with respect to the joint locations.

In order to reduce the combinatorial complexity associated

with pose recovery, previous generative approaches apply

part-based decomposition techniques [33]. This typically

involves searching first for the torso, then arms and legs

[23, 24, 28]. This decomposition approach is error prone,

in the sense that estimation mistakes made early on based

on partial model knowledge cannot be corrected later on.

In practice, this means that instances with an appreciable

amount of torso movement and rotation are difficult to han-

dle.

Methods for pose initialization can serve to initialize the

beforementioned trackers. An increasingly popular alter-

native is their use in “Tracking-as-recognition” approaches,

especially when no strong motion priors are available. Here,

pose estimates obtained independently at each time instant

are integrated to consistent trajectories, taking into account

a more generic motion model. This is typically achieved by

Markov chain optimization [10, 20, 24, 26].

The contributions of this paper are two-fold. The main

contribution is the integration of three components into one

system: single-frame pose recovery, temporal integration

and texture-based model adaptation. The enforcement of

temporal coherence results in a set of most likely pose tra-

jectories, which are used to generate predictions. These

are subsequently integrated into the pose estimation pro-

cess. This is unlike [24], where the computation of the op-

timal pose trajectory is solely a post-processing step, de-

coupled from the estimation process. Model adaptation

in our approach does not require a pre-defined key pose

(i.e. feet apart) [10, 28] or a scripted initialization move-

ment [13]. Instead, the likelihood of a shape model match

is used as weighting factor for texture-based model adap-

tation, if the former is above a certain threshold. To fur-

ther reduce the chance of a wrong model update, we up-

date only for those poses which lie on the most likely pose

trajectory (i.e. we perform batch-mode temporal integration

before model adaptation, rather than model adaptation at

each time instant independently [2]). We do not use strong

motion priors [33].

The second contribution concerns the way multi-camera

pose recovery is performed. The error-prone foreground

segmentation resulting from operating in dynamic outdoor

environments together with the lower number of cameras
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used prevents solving matters by Shape-from-Silhouette

(SfS) techniques [6, 15, 21, 34]. Inverse kinematics tech-

niques [13, 16], on the other hand, require close initial es-

timates. We propose to perform 3D pose recovery for each

camera independently and fuse information at the pose pa-

rameter level (high-level). This improves the system scala-

bility with respect to the number of cameras (e.g. allowing

optimized per-camera matching, improved algorithm paral-

lelism). We only apply SfS to determine a rough ROI (Sec-

tion 3.3). Furthermore, on a practical note, we demonstrate

that an exemplar-based approach for single-frame pose re-

covery can be used to describe the articulations of the upper-

body as a whole. This ensures that upon matching, all avail-

able model knowledge is used at the same time, avoiding

some of the drawbacks of the part-based decomposition ap-

proaches [23, 24, 28] discussed earlier.

3. 3D Pose Estimation

3.1. Overview

Figure 1 presents an overview of the proposed system.

Image pre-processing determines a rough region of inter-

est in each 2D image and in the 3D scene, based on back-

ground subtraction (Section 3.3). In the hypothesis gener-

ation stage, candidate 3D poses are generated based on hi-

erarchical shape matching in the individual camera views

(Section 3.4). In the subsequent hypothesis verification

stage, the candidate 3D poses are augmented with those de-

rived from a prediction step (except at the first frames). The

resulting pose candidates are projected to all camera views

and ranked according to a multi-view matching score based

on shape and (possibly) texture information (Section 3.5).

Temporal integration consists of computing best trajecto-

ries in batch mode using a Viterbi-style maximum likeli-

hood approach (Section 3.6). Poses that lie on the best

trajectories are used to generate and adapt a texture model

(Section 3.7). This provides the beforementioned texture

component in the multi-view matching score of hypothesis

verification (while no texture model is available during the

first frames, the multi-view matching score is based on the

shape component only).

3.2. 3D Shape model

Our 3D upper body model uses tapered superquadrics

as body part primitives, yielding a good trade-off between

desired accuracy and model complexity [11]. Articulation

at each joint is represented using transformations of homo-

geneous coordinates x
′ = Hx, H = H(R(φ, θ, ψ), T ),

where R is a 3 × 3 rotation matrix determined by the Euler

angles φ, θ, ψ, and T a constant 3 × 1 translation vector.

We represent a 3D upper body pose as an 13-dimensional

vector of joint angles

π =
(

πtorso(φ, θ, ψ), πl.shoulder(φ, θ, ψ), πl.elbow(θ),

πr.shoulder(φ, θ, ψ), πr.elbow(θ), πhead(φ, ψ)
)

(1)

augmented by a three dimensional vector x denoting the

position of the root of the articulated structure (in our case,

the torso center).

3.3. Image pre­processing

The aim of pre-processing is to obtain a rough region of

interest, both in terms of individual 2D camera views and

in terms of the 3D space. For this, we fuse the computed

foreground masks of the individual camera views [38] by

means of volume carving [18]. After the necessary morpho-

logical operations, connected voxel components of a min-

imum height and size give an estimate of the number of

people and their rough 3D location in the scene. This in

turn yields information about the image scales and regions

of interest to be used in the forthcoming hypothesis genera-

tion step (Section 3.4). Projecting the reconstructed voxels

onto the camera images produces an improved foreground

mask. Note that in the considered outdoor environment with

dynamic background and a limited number of cameras (3)

we do not obtain well segmented human silhouettes in a

quality suitable for solving pose recovery by SfS techniques

[6, 15, 21, 34] outright.

3.4. Single­camera hypothesis generation using a
hierarchical exemplar shape representation

We follow an exemplar-based approach to 3D pose re-

covery, matching a scene image with a pre-generated sil-

houette library with known 3D articulation. To obtain the

silhouette library, we discretize the state space between

lower and upper bounds for each joint angle while allowing

a 360◦ torso rotation along the major body axis, and ren-

der the 3D shape model (see Section 3.2) by orthographic

projection. The four angles of each arm are discretized into

6 states each, the torso rotation into 15 states, and the re-

maining angles into 3 states each. The average angle delta

is approximately 22◦. We reduce the number of allowable

joint angle combinations by pruning anatomically impossi-

ble poses (using rule-based heuristics) and by collision de-

tection on the shape model. About 15 × 106 poses remain.

We further reduce the number of exemplars in our pose li-

brary to about 180,000 by clustering the silhouettes based

on shape similarity and keeping only the cluster representa-

tives. The remaining silhouette exemplars now contain links

to the underlying poses, improving compactness of repre-

sentation (e.g. ambiguous front/back poses represented only

once during silhouette matching). The silhouette exemplars

furthermore contain the 2D location of common reference

point (in our case, the torso center).
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Figure 2. Schematized structure of the 4-level shape exemplar hier-

archy. The exemplars at the leaf level represent a variable number

of 3D articulations compactly grouped together (Section 3.4).

The exemplars in the library are organized in a (4-level)

template tree following [12, 29, 35], see Figure 2. On-

line matching is efficiently implemented by a tree traver-

sal; search is discontinued below those tree nodes where

the match is below a certain (tree-level specific) threshold.

Similar to [12], we use the chamfer distance Dc(A,B) be-

tween two sets of binary edge features A and B as dissim-

ilarity measure for clustering and matching. Instead of us-

ing silhouette exemplars of different scales, we rescale the

scene image accordingly using information from the pre-

processing step (see Section 3.3). After the matching step,

we obtain a ranked lists of silhouette exemplars, one for

each camera view. We select the Ni best matches for view

i (Ni = 300 in the experiments) and extract the previously

grouped original poses from each silhouette exemplar. Note

that those original poses are in terms of 3D joint angles and

do not encode depth due to the used orthographic projec-

tion. To obtain candidate 3D poses, we backproject the

2D location of the reference point (torso center) at vari-

ous depths corresponding to the epipolar line in the other

cameras in regions with foreground support. The possible

3D positions and poses are pruned by shape matching the

respective projections with the silhouette exemplars which

correspond to the found 3D joint angles in the other cam-

era views, using Dc(A,B)). For efficiency, this mapping

amongst the silhouette exemplars across the camera views

is computed off-line by means of a look-up table. We now

obtain a ranked list of candidate 3D poses that enter the hy-

pothesis verification step.

3.5. Multi­camera hypothesis verification

For hypothesis verification at time step t, we rank all in-

put pose hypotheses according to a descending probability

p({πt,xt}|Ot) of a pose πt with an associated 3D position

xt, given an observation Ot. In the remainder, we simplify

the notation {πt,xt} to πt, making the 3D position implicit

given the pose. We take πt ∈ Πt = Πdet
t ∪ Πpred

t , where

Πdet
t is the list of pose hypotheses from the detection step

(see Section 3.4) and Πpred
t the list of prediction hypotheses

from the previous time step (see Section 3.6). We model the

relation

p(πt|Ot) ∝ p(Ot|πt) p(πt) (2)

according to Bayes’ rule, where p(πt) is a uniform prior

over the space of anatomically possible poses.

The observation likelihood in Equation 2 is decom-

posed as

p(Ot|πt) ∝ p(St|πt) p(Tt|πt) (3)

where St describes the shape similarity and Tt the texture

similarity. We define

p(St|πt) = p(Ds(S,E)) (4)

p(Tt|πt) = p(Dt(T, I)) (5)

Ds(S,E) in Equation 4 is a shape-based multi-view sim-

ilarity measure between the reprojected 3D model silhou-

ette S in the pose πt and detected image edges E based on

the chamfer distance (see Section 3.4) over K cameras.

Ds(S,E) =
∑

k∈K

Dc(S,E) (6)

Dt(Tk, I) in Equation 5 is a measure for the similarity be-

tween the pixels u of the reprojected textured model Tk in

camera k and the corresponding pixels v of the scene image

I and is defined as

Dt(T, I) =
∑

k∈K

1

|Tk|

∑

u∈Tk





∑

c∈{r,g,b}

(uc − vc)
2





1

2

(7)

which is the sum of the average pixel-wise Euclidean dis-

tance in our color space (see Section 3.7), |Tk| being the

number of pixels on the reprojected model.

The individual probabilities p(Ds(S,E)) and

p(Dt(T, I)) are each modeled using a gamma distri-

bution whose parameters are considered independent

from the pose πt and estimated from the training data by

maximum likelihood.

Hypothesis clustering. Evaluating the observation

likelihood is an expensive operation since it involves ren-

dering a 3D pose across multiple camera views. Assuming

that p(πt|Ot) in Equation 2 is a locally smooth function on

a neighborhood of πt in pose space, one can implement the

following two-step approach to speed up the implementa-

tion. We cluster all pose hypotheses using a pose distance

measure, evaluate all prototypes according to Equation 2

and only if the latter is above a threshold (obtained by cross-

validation), do we evaluate the individual cluster elements.

The pose distance measure we use is

dx(π1,π2) =
1

|B|

∑

i∈B

de(
~vi
1,
~vi
2) (8)
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where B is a set of locations on the human upper body,

|B| the number of locations, ~vi is the 3D position of the

respective location in a fixed Euclidean coordinate system,

and de(.) is the Euclidean distance. For the set of locations,

we choose torso and head center as well as shoulder, elbow

and wrist joint location for each arm.

3.6. Temporal disambiguation and prediction

Temporal integration facilitates a further disambiguation

among the candidate solutions obtained at a single time

step, determining pose trajectories that match the observa-

tions well and exhibit coherent motion. This is formulated

as the following optimization task: given a sequence of ob-

servations O0, . . . , OT up to time step T , find the pose se-

quence π0, . . . ,πT ∈ Π0, . . . ,ΠT that maximizes

p(π0:T |O0:T ) ∝
T

∏

t=1

p(πt|πt−1) ×
T

∏

t=0

p(Ot|πt) (9)

p(πt|πt−1) denotes the pose transition probability as a first-

order Markov chain, while p(Ot|πt) is the observation like-

lihood of Equation 3. This type of problem is solved by ap-

plication of the Viterbi algorithm [27] on the input data; in

our case, this in done in a sliding window over the last 50
frames. We use a List Viterbi Algorithm (LVA) [31] imple-

mentation to compute not only the optimal, but the N best

trajectories through the Viterbi trellis at each time step.
With respect to the transition model, we make a number

of simplifications to reduce the number of parameters in-
volved. We assume the location of the root of the articulated
structure to be independent of the joint angle configuration.
We furthermore decouple the joint angles associated with
the various body parts. Finally, we only consider parame-
ter changes, i.e. we do not condition on specific previous
values. We thus set

p(~πt|~πt−1) ∝ N (∆~x
root; ~µroot, Σroot) × (10)

N (∆~π
head
t ; ~µhead

, Σhead) ×N (∆~π
torso
t ; ~µtorso

, Σtorso)

×N (∆~π
l.arm
t ; ~µarm

, Σarm) ×N (∆~π
r.arm
t ; ~µarm

, Σarm)

and estimated the parameters for the different normal dis-

tributions by maximum likelihood on the training data.

We generate pose predictions at every time step, which

augment the detections of the next time step, as indicated

in Figure 1, and are generated using whole trajectory in-

formation. To generate K pose predictions (in our system,

K = 200) at time step t, K trajectories are sampled from

the N best trajectories (we chose N = 500) with a proba-

bility proportional to the trajectory probability determined

by the LVA algorithm. For each of these, both pose predic-

tion ~̃πk
t+1 and position prediction ~̃xk

t+1 are determined using

stochastic sampling. The pose prediction is generated as

~̃πk
t+1 := ~πk

t + ∆~πt→t+1 (11)

where the values of ∆~πt→t+1 are drawn from the normal

distributions described in Equation 10. The position predic-

tion is drawn from N (~µk
~x,t+1

,Σk
~x,t+1

), where ~µk
~x,t+1

is the

predicted state and Σk
~x,t+1

the predicted covariance from

Kalman filtering the available trajectory data.

We opted for the above sliding window batch-mode

framework rather than a recursive framework because of in-

creased estimation stability. Treating the tracking problem

as a detection problem over a discrete pose space in every

frame enables us to (re-)initialize the state of our system,

while recursive filtering frameworks such as particle filter-

ing might eventually fail and lose track. Furthermore, our

prediction mechanism can increase tracking accuracy both

by lifting the constraint of the discrete pose space and by

“bridging gaps” where detections are poor.

3.7. Model adaptation using texture information

We now turn to augmenting our shape model with texture

information in order to increase the discriminative power

of hypothesis verification. Clearly, the outcome of texture

mapping is very sensitive to the estimated pose of the shape

model, and matching with a wrong texture model is truly

damaging for pose estimation. In order to avoid incorrect

texture model updates as much as possible, we decided not

to perform these based on pose estimates at a single time

instant, but rather based on the more reliable N trajecto-

ries computed in previous section (we currently maintain a

single texture model associated to the optimal trajectory).

Given the optimal trajectory returned by the temporal

disambiguation step, we evaluate the matching likelihoods

p(Ds,torso(S,E)), p(Ds,l.arm(S,E)), p(Ds,r.arm(S,E))
for the chamfer match of each body part ∈ {torso & head,

left arm, right arm} for the last five poses of the trajectory.

Similar to the probabilities in Equation 3, these are modeled

using gamma distributions estimated from training data. For

each body part, we then make a decision to adapt the tex-

ture model using the pose in the trajectory with the highest

match likelihood, only if this likelihood is above a certain

threshold.

In case of model adaptation, we acquire a texture map

for the respective body part by sampling the visible area

of the superquadrics for each camera view and storing the

color values in a texture image. Collision detection on the

ray from camera center to the points on the superquadric

ensures that we do not sample in areas of self-occlusion

through other body parts. The texture images are then com-

bined by choosing for each pixel the sampled value for

which the angle between superquadric normal vector and

ray from camera center is smallest. Figure 3 shows an ex-

ample of a reprojected texture map acquired from the de-

picted pose.

Because images from different cameras are effectively

stitched together during the acquisition of a texture map,
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Figure 3. Example of shape model enriched with texture informa-

tion, rendered from various viewpoints. Parts of the body that are

occluded in all cameras stay untextured and are shown in white.

Depicted color space is non-normalized RGB.

(a) (b)

Figure 4. Model adaptation of torso (a) ground truth texture map

(b) temporal progression of the texture map from an initial in-

correct estimate to a correct (but somewhat blurred) estimate by

Kalman filtering

there will be differences in luminance due to camera proper-

ties and scene illumination. We reduce the variation induced

by global indirect illumination by working in a normalized

RGB color space r = R/L, g = G/L, b = B/L, where

L := 1

|K|

∑

k∈K(Rk +Gk +Bk) is the average luminance

over the scene pixels K .

The texture model is implemented using Kalman filter-

ing on each pixel of the texture map in order to become

more robust to potential input from incorrect estimates. See

Figure 4 for an illustration. At each new time step, the state

of each filter is evaluated to generate a texture map for use

in hypothesis verification (see Section 3.5).

4. Experiments

Our experimental data consists of recordings from three

synchronized color CCD cameras looking over a train sta-

tion platform. In 12 sequences (about 10s on average, cap-

tured at 20Hz), various actors perform unscripted move-

ments, such as walking, gesticulation and waving. The set-

ting is challenging; the movements performed contain a siz-

able amount of torso turning, the background is cluttered

and non-stationary (people are walking in the background,

trains are passing by), furthermore, there are appreciable

lighting changes. The realism of the dataset in the context

of surveillance was the key motivation for preferring it over

the popular HumanEva dataset [33]. We make this novel

data set public to facilitate benchmarking1.

Cameras were calibrated using Bouguet’s method [4];

this enabled the recovery of the ground plane. Ground truth

pose was manually labeled for all frames of the data set

1The data set is made freely available for non-commercial research pur-

poses. See http://www.science.uva.nl/research/isla/downloads/3d-pose-

estimation/index.html or contact the second author

(considering the quality of calibration and labeling, we es-

timate the ground truth accuracy to be within 3cm). The

general motion model (Section 3.6) was derived from the

aggregated CMU MoCap data2; after some conversions the

latter yielded 756,844 frames for training.

Figure 6 shows examples of recovered poses, taken from

the best trajectory using shape and texture cues, with the

proposed approach; 3D pose is estimated quite well. The

main failure mode concerns those ”ambiguous” poses with

the hands close to the torso; the silhouette-based approach

stands little chance in recovering exact hand position, fur-

thermore, most clothing does not contain appreciable tex-

ture differences between torso and arms. Table 1 quantifies

the results in terms of the deviation between estimated and

ground truth 3D pose over the entire dataset. It shows the

successive benefit of adding predictions (Section 3.6) and

texture-based model adaptation (Section 3.7) to the single-

frame pose recovery, resulting in a reduction of pose error

from 12.7cm to 10.9cm.

We furthermore compared the various instantiations of

our system with the hierarchical Partitioned Annealed Parti-

cle Filter (PAPF) [7]. This is a state-of-the-art technique for

tracking high-DOF (unconstrained) articulated movement,

which, unlike SfS approaches, does not require perfect sil-

houette segmentation. To focus on the essential differences,

we implemented the PAPF using the same foreground seg-

mentation (Section 3.3) and shape likelihood computation

(Eq. 4). We also incorporated the CMU MoCap data in

the PAPF when initializing the diffusion covariance. After

some tuning, we selected a parameterization with 4 layers

for our 13 DOF model (cf. 10 layers for a 30 DOF model

in [7]). The number of particles per layer was set to 200,

as in [7]. The PAPF was initialized with the ground truth

in the first frame of each sequence, while our system self-

initializes.

In experiments, we observed a suprisingly good perfor-

mance of the PAPF on many sequences. For more diffi-

cult sequences (appreciable background clutter, ”ambigu-

ous” poses as discussed above, fast torso turning), however,

we found that the PAPF particles dissipated away from the

correct solution after a while, with little chance for recovery.

On average, we obtained a considerable outperformance of

the proposed approach vs. PAPF (avg. pose error of 10.9cm

vs. 14.6cm), even though the latter had a clear headstart

starting from the ground truth pose.

Figure 5 provides a closer look at a challenging track-

ing sequence with two 360◦ torso turns in short succession

(frames 70-150 and 160-420). The plot shows the pose er-

ror (Equation 8) for the Viterbi-best trajectory using various

system configurations, as well as a comparison with the tra-

jectory obtained by PAPF. The greyish backdrop encodes

the distribution of the pose error over the single-frame de-

2http://mocap.cs.cmu.edu/
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our system (S & T, det. + pred.) our system (S, det. + pred.) our system (S, det. only) PAPF [7]

avg 10.9 (5.1) 11.6 (5.7) 12.7 (6.6) 14.6 (6.6)

Table 1. Avg. pose error in cm (Eq. 8) over 12 test sequences; standard deviation in brackets (S:shape, T:texture)

frame nr
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Figure 5. Pose error (in cm) for best trajectory for three system

configurations (with and without prediction generation; S:shape,

T:texture) and for the PAPF. The background shows histograms

of the pose distance of the single-frame detections per time step

(lighter shades indicate higher densities).

tections (lighter shades indicate higher densities). One can

differentiate two bands of detections; the one with higher

pose error (around 40cm) corresponds to poses which are

similar in appearance except for a 180◦ turn of the torso. In

this sequence, the Viterbi-based approaches correctly track

the two 360◦ torso turns, whereas the PAPF estimates the

torso orientation unchanged. We take this as an example of

the increased robustness of the proposed Viterbi trajectory-

based estimation (which combines detection and prediction)

to momentarily incorrect pose estimates.

The current system requires 15-20s per image triplet to

recover 3D pose, running with unoptimized C++ code on a

2.6 GHz Intel PC. Although not fast in absolute terms, it

seems to compare favorably to the processing speeds pre-

viously reported in the literature concerning 3D pose re-

covery with generative models against non-stationary back-

ground, e.g. [2, 17, 19, 23]; yet direct comparisons are

difficult (unconstrained upper body movement vs. whole-

body walking). Our performance bottleneck is currently

multi-camera hypothesis verification (Section 3.5) and, to a

lesser degree, single-camera hypothesis generation (Section

3.4). These components are easily parallelizable, allowing

a near-linear reduction of processing speed with available

CPU/GPU cores.

5. Conclusion and Further Work

We proposed an integrated system for estimating 3D hu-

man upper body pose from multiple cameras. The system

combines a hierarchical, exemplar-based single-frame pose

recovery, Viterbi-style best trajectory estimation, and a fil-

tering approach to 3D model texturing. We demonstrated an

improvement versus the state-of-the-art in a dozen of chal-

lenging real-world sequences depicting different actors per-

forming unscripted movements.

Future work involves the recovery of whole-body pose

and that of multiple people. A direct extension of the chosen

exemplar-based approach to whole-body recovery is possi-

ble but rather memory intensive. A more suitable solution,

better able to deal with partial occlusion, is to recover upper

and lower body pose separately and integrate results.
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