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Abstract

This contribution addresses the problem of bias in stereo

based motion estimation. Using a biased estimator within a

visual-odometry system will cause significant drift on large

trajectories. This drift is often minimized by exploiting aux-

iliary sensors, (semi-)global optimization or loop-closing.

In this paper it is shown that bias in the motion estimates

can be caused by incorrect modeling of the uncertainties

in landmark locations. Furthermore, there exists a relation

between the bias, the true motion and the distribution

of landmarks in space. Guided by these observations, a

novel bias reduction technique has been developed. The

core of the proposed method is computing the difference

between motion estimates obtained using dissimilar het-

eroscedastic landmark uncertainty models. This approach

is accurate, efficient and does not rely on auxiliary sensors,

(semi-)global optimization or loop-closing. To show the

real-world applicability of the proposed method, it has

been tested on several data-sets including a challenging 5

km urban trajectory. The gain in performance is clearly

noticeable.

1. Introduction

In this article, the focus is on accurate ego-motion esti-

mation of a moving stereo-camera. If the camera is mounted

on a vehicle this is also known as stereo-based visual-

odometry. Stereo-processing allows estimation of the three

dimensional (3D) location and associated uncertainty of

landmarks observed by a stereo-camera. Subsequently, 3D

point clouds can be obtained for each stereo-frame. By es-

tablishing correspondences between visual landmarks, the

point clouds of two successive stereo-frames, i.e. from

t − 1 to t, can be related to each other. From these two

corresponding point clouds the pose at t relative to the

pose at t − 1 can be estimated. The position and ori-

entation of the stereo-rig in the global coordinate frame

can be tracked by integrating all the relative-pose esti-

mates. In the past decades several methods have been pro-

posed to estimate motion parameters from corresponding

3D point patterns [1, 7, 11, 23, 29]. The uncertainty of

stereo-reconstruction is heteroscedastic i.e. inhomogeneous

(not the same for each point) and anisotropic (different in

each dimension). For this type of noise the Heteroscedas-

tic Error-In-Variables (HEIV) estimator was developed by

Matei and Meer [18, 19]. By taking heteroscedasticity into

account the HEIV estimator attains higher accuracy than

estimators which wrongly assume independent identically

distributed noise. The approaches mentioned so far directly

minimize a 3D error. An alternative is minimizing an error

in image space. While these approaches can also be used

for accurate stereo-based visual-odometry [4], they are not

the focus of this work.

In general, vision based approaches to motion estima-

tion are susceptible to outlier landmarks. Sources of outlier

landmarks range from sensor noise and correspondence er-

rors to independently moving objects such as cars or peo-

ple that are visible in the camera views. Robust estimation

techniques, such as RANSAC [9], are therefore frequently

applied [21, 22, 24]. Recently, Dubbelman et al. [6] pro-

posed using Expectation Maximization directly on the mo-

tion space SE(3). This technique depends on the theory of

Riemannian Geometry. In the case of visual-odometry it

has advantages in terms of accuracy and efficiency.

The integration of relative-pose estimates to track the

global-pose is sensitive to error-propagation, i.e. small

frame-to-frame motion errors eventually cause large errors

in the estimated trajectory. In the literature several vision

and non-vision based approaches can be found to minimize

this drift. For example, techniques such as (semi-)global op-

timization like (sliding-window) bundle adjustment [27,28],

loop-closing [15,30] or exploiting auxiliary sensors such as

an IMU [14,24] are frequently used. One of the most popu-

lar approaches of the past decade is Simultaneous Localiza-

tion and Mapping (SLAM) and many stereo-vision SLAM

approaches exists [2,8,25,26]. The benefit of SLAM is that
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it can combine all previous mentioned methods i.e. global

optimization, loop-closing and using auxiliary sensors in

one mathematical framework.

In this contribution, however, the focus is on achieving

accurate visual-odometry results for loop-less trajectories

without relying on auxiliary sensors or (semi-)global opti-

mization. Therefore, it is investigated if, and how, drift in

stereo-vision based relative-pose estimates can be related to

structural errors i.e. bias in the optimization process. In sec.

2 and 3 HEIV based motion estimation using stereo-vision

is analyzed. It will be shown that bias in the estimated mo-

tion is caused by approximations made on the noise distri-

butions governing the data. The proposed bias reduction

technique is then introduced in sec. 4. The performance

gain due to bias reduction is presented for simulated data in

sec. 5 and for real-world data in sec. 6. The conclusions

and a discussion can be found in sec. 7.

2. HEIV motion estimation

All static landmarks observed by a stereo-camera which

moves according to a 3D motion, described using a rota-

tion matrix R̄ and translation vector t̄, obey v̄i = R̄ūi + t̄.

Here v̄i and ūi are the noise free coordinates of a particular

landmark observed relative to the coordinate frame of the

moving sensor at respectively t− 1 and t. Two correspond-

ing landmarks v̄i and ūi can be combined into the matrix

M̄i =





v̄x − ūx 0 −v̄z − ūz v̄y − ūy

v̄y − ūy v̄z + ūz 0 −v̄x − ūx

v̄z − ūz −v̄y − ūy v̄x + ūx 0



 .

(1)

Then the motion constraint between v̄i and ūi can also be

expressed as

M̄iq̄ + Q̄t̄ = 0 , (2)

Ohta and Kanatani [23] where q̄ = [q, qi, qj , qk]
⊤

is the

quaternion expressing the rotation R and

Q̄ =





−q −qk qj

qk −q −qi

−qj qi −q



 . (3)

Clearly v̄i and ūi are not observed directly. According to

[18,19] the noisy observations of v̄i and ūi can be modeled

with.

vi = v̄i + εvi
, ui = ūi + εui

, (4)

where εvi
and εui

are drawn from symmetric and inde-

pendent distributions with zero mean and data dependent

covariances S(0, ηΣvi
) and S(0, ηΣui

) respectively. It is

thus assumed that the noise distribution can be described

using a Gaussian. Note that the covariances only need to be

known up to a common scale factor η. Clearly the noise

governing the observed data is modeled as heteroscedas-

tic, i.e. anisotropic and inhomogeneous. Analogue to eq.

1 the observed landmarks can be combined into the ma-

trix M. From the matrices Mi and M̄i the vectors wi =
[

m1

i ,m
2

i ,m
3

i

]⊤
and w̄i =

[

m̄1

i , m̄
2

i , m̄
3

i

]⊤
can be con-

structed, where the superscript is used to index the rows of

the Mi and M̄i matrices. The noise effecting wi will be de-

noted as Ci and it can be computed from Σzi
and Σui

[18].

The HEIV based motion estimator then minimizes the fol-

lowing objective function

[q, t] = arg min
{q,t,w̄}

n
∑

i=1

(wi − w̄i)
⊤Ci(wi − w̄i) . (5)

under the constraint eq. 2. In [18] it is explained that a

solution to this non-linear problem can be obtained by it-

eratively solving a generalized eigen problem. More detail

on this approach can be found in [17, 19]. In the rest of the

paper {R, t} = HEIV (v,Σv,u,Σu) denotes the motion

estimated on the landmarks vi and ui with the covariances

Σvi
and Σui

for i = 1..n.

In [19] it is shown that optimization approaches such as

Generalized Total Least Squares (GTLS), Sampson method

and the renormalization approach of Kanatani [13] can be

derived from HEIV when simplifications are assumed. Fur-

thermore, its accuracy is at least equal to other advanced

optimization techniques such as the Fundamental Numeri-

cal Scheme [3] and Levenberg-Marquardt, whereas HEIV

has better convergence and is less influenced by the initial

parameters. The benefit of using HEIV has been noted for

many computer vision problems such as motion estimation,

camera calibration, tri-focal tensor estimation and structure

from motion. The relevant references can be found in [19].

In the derivation of the algorithm an implicit assump-

tion, apart from symmetry, is made on the error models

governing the observations. Recall that the observations

are modeled with an additive noise term εzi
, drawn from

S(0, ηΣzi
), on the true data i.e. zi = z̄i + εzi

. Here zi is

either vi or ui. Clearly the noise governing the observations

can not depend, in the physical sense, on those same obser-

vations that are being generated. When the error is mod-

eled as additive on the true data the general heteroscedastic

model is

vi = v̄i + εv̄i
, ui = ūi + εūi

(6)

and eq. 5 becomes

[q, t] = arg min
{q,t,w̄}

n
∑

i=1

(wi − w̄i)
⊤C̄i(wi − w̄i) , (7)

where εv̄i
and εūi

are drawn from symmetric and indepen-

dent distributions with zero mean and covariances depen-

dent on the true data i.e. S(0, ηΣ̄v̄i
) and S(0, ηΣ̄ūi

). The

problem is that Σ̄v̄i
and Σ̄ūi

can be unobservable or simply

be unknown. In this case, they are often approximated with

Σvi
and Σui

. This approximation can cause a small bias
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in the estimate of the motion parameters. Since the absolute

pose is the integration of possible thousands of relative-pose

estimates, this small bias will eventually cause a significant

drift.

3. Stereo-vision

To obtain the static landmarks needed for motion estima-

tion a stereo based approach is used. This requires image

feature correspondences between successive stereo-frames

and between images in the stereo-frames themselves. To

this purpose the Scale Invariant Feature Transform (SIFT),

Lowe [16], is used. A threshold is applied on the distance

between SIFT descriptors to ensure reliable matches be-

tween image features. Furthermore, the epipolar constraint,

back-and-forth and left-to-right consistency are enforced.

It is assumed that stereo images are rectified according to

the epipolar geometry of the used stereo-rig, Hartley and

Zisserman [10]. From an image point in the left image

zl = [xl, yl]
′

and its corresponding point in the right image

zr = [xr, yr]
′
, the disparity can be obtained with sub-pixel

accuracy d = xl−xr. Using the disparity d, the focal length

f of the left camera and the stereo base line b, the 3D posi-

tion of the landmark z̄ imaged by zl and zr, relative to the

optical center, of the left camera can be estimated with

z =

[

xlb

d
,

ylb

d
,

fb

d

]T

. (8)

More advanced stereo reconstruction methods can be found

in [10, 13]. Using them would be an interesting research

direction. In this work, however, the estimated motion is

utilized to find an improved estimate of the landmark posi-

tions.

3.1. Stereo­uncertainty modeling

The landmark z̄ is projected onto the images of a stereo

camera resulting in the noise free image points z̄l and z̄r.

Due to noise in the sensing process only zl and zr are ob-

served, where zl = z̄l + εl and zr = z̄r + εr. Assuming

that εl and εr are drawn from independent identically dis-

tributed (i.i.d.) Gaussian noise with isotropic covariance Σ,

the regions around z̄l and z̄r that have a probability of α to

contain zl and zr can be described using circles. The recon-

struction based on zl and zr i.e. z has then a probability of

α2 to lie within the intersection of the two elliptical cones

spanned by the circles and the camera optical centers, see

fig 1.c and 1.e. Depending on the true position of the land-

mark z̄ the intersection volume around z̄ changes. Clearly

the general heteroscedastic model of eq. 6 is appropriate.

Note also, in fig. 1.d, how the skewness of the intersection

volume increases with the depth of the landmark.

It is the intersection-volume, approximated with the

symmetric distribution S(0, ηΣ̄z̄), that should be used in
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Figure 1. Coordinate axis and image quadrant convention (a). Ex-

ample of inhomogeneously distributed landmarks (b). Impression

of stereo-reconstruction uncertainty modeling (c), top-view (e).

Skewness of stereo-reconstruction uncertainty (d).

the optimization. Unfortunately, enforcing symmetry is

necessary within the HEIV optimization scheme. Impor-

tant is the correct relative scale and orientation of Σ̄z̄. Be-

cause the scale and orientation of the intersection volume

depends on z̄ ,which is unobservable, it is not straightfor-

ward to obtain. Note that enforcing symmetry is an issue

when minimizing 3D errors as well as when minimizing re-

projection errors for most optimization strategies. This is a

consequence of the fact that the reprojection of the uncer-

tainty in the reconstructed landmarks position is not Gaus-

sian either.

In [18] the authors propose estimating the stereo-

reconstruction uncertainty with a bootstrap approach us-

ing residual resampling. The residuals are added to the

reprojection z of the estimated landmark position z. As

a direct consequence, Σz is estimated instead of Σ̄z̄. The

stereo-reconstruction uncertainty can also be estimated us-

ing error-propagation of the image-feature position uncer-

tainty Σ using the Jacobian J of the reconstruction function,
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Matthies and Shafer [20],

Σz = Jz

[

Σ 0

0 Σ

]

J⊤
z

, (9)

Jz =





−xlb
d2 + b

d
0 xlb

d2 0
−ylb
d2

b
d

ylb
d2 0

−fb
d2 0 fb

d2 0



 . (10)

Because the jacobian is calculated on the observed projec-

tion z, Σz is estimated instead of Σ̄z̄.

3.2. Improved stereo uncertainty modeling

To obtain improved estimates of the stereo-

reconstruction uncertainties they are first approximated

using eq. 9 and 10. Then by using the rotation R̂ and trans-

lation t̂ estimated with {R̂, t̂} = HEIV (v,Σv,u,Σu),
the observed points can be corrected. Firstly, they are

transformed into the same coordinate frame with

u′
i = R̂ui + t̂

Σu′

i
= R̂Σui

R̂
⊤ . (11)

In this coordinate frame the landmark positions can be fused

according to their uncertainties with

K = Σvi
(Σvi

+ Σu′

i
)−1

v̂i = vi + K(u′
i − vi)

ûi = R̂⊤(v̂i − t̂)

, (12)

Kalman [12]. Finally, a copy of the fused landmark posi-

tions is transformed according to the inverse of estimated

motion. The process results in an improved estimate of the

landmark positions which exactly correspond to the esti-

mated motion. The real goal is an improved estimate of

the landmark uncertainties. To obtain them, the new esti-

mates v̂i and ûi can be projected onto the imaging planes of

a modeled stereo-camera. The appropriate parameters can

be obtained by calibration of the actual stereo-camera being

used. From these projections v̂i and ûi an improved esti-

mate of the covariances i.e. Σ̂v̂i
and Σ̂ûi

can be obtained

with eq. 9 and 10. This technique is preferred because it

produces covariances with the correct orientation and rela-

tive scale given v̂i and ûi.

4. Estimating and compensating motion bias

A premise of the proposed bias reduction technique is

the absence of landmark outliers. An initial robust estimate

of the motion can be obtained using techniques explained

in [6]. Given the robust estimate the improved location and

uncertainty of the landmarks can be calculated with eq.11

and 12. Landmarks can then be discarded based on their

Mahalanobis distance to the improved landmark positions

(vi − v̂i)
⊤Σ̂v̂i

(vi − v̂i)+(ui − ûi)
⊤Σ̂ûi

(ui − ûi). (13)

A new motion estimate is then calculated using all the in-

liers. The process can be iterated several times or until con-

vergence.

From now on vi and ui and their covariances Σvi
and

Σui
, obtained using eq. 9 and eq. 10, for i = 1..n are

assumed to be inliers only. The bias reduction technique

then estimates the motion on these inliers

{

R̂, t̂
}

= HEIV (v,Σv,u,Σu). (14)

Given R̂ and t̂ the uncertainties are improved using the

technique describe in sec. 3.2 resulting in Σ̂v̂i
and Σ̂ûi

.

Another motion estimate, using the new covariances, is then

generated

{

ˆ̂
R,

ˆ̂
t
}

= HEIV (v, Σ̂v̂,u, Σ̂û). (15)

The motion bias is then approximated using

tbias =





ωx

ωy

ωz





ˆ̂
t − t̂

Rbias = DCM(





ωp

ωh

ωr



A(R̂⊤ ˆ̂
R))

.

(16)

Here ωx, ωy and ωz are the appropriate gains that scale

the estimated tendency of the translation bias to the cor-

rect magnitude. By using the gains ωp, ωh and ωr the same

is applied to the Euler angles (pitch,heading,roll) obtained

with A, of the rotation bias tendency. The function DCM

transforms the scaled Euler angles back into a rotation ma-

trix, [5]. Finally, an unbiased motion estimate is obtained

with

Runbiased = R̂Rbias

tunbiased = t̂ + tbias

. (17)

The need for the bias gains (ωx, ωy, ωz, ωp, ωh, ωr) is a

direct consequence of the fact that Σ̂v̂ and Σ̂û are only, on

average, improved estimates of the true landmark uncertain-

ties Σ̄v̄ and Σ̄ū. In reality, this improvement might even be

very small. Nevertheless, the improvement reveals the bias

tendency. The gains then amplify the estimated tendency to

the correct magnitude.

5. Results on simulated data

Simulation is used to give insight into the relevance

of the claims and methods introduced in this contribution.

Most important is the claim that eq. 4 and 5 are essentially

wrong and should be replaced with eq. 6 and 7. Further-

more, interesting observations regarding the dependency of
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the bias on the landmark distribution are given in this sec-

tion. Using the available groundtruth R̄ and t̄, the bias in

the estimators is calculated as follows

Biast =

(

1

m

m
∑

i=1

t̂i

)

− t̄ ,

BiasR = 1

m

m
∑

i=1

A(R̄⊤R̂i)

. (18)

5.1. Symmetric ‘stereo­like’ noise

For the first experiment only the bias due to approxi-

mating Σ̄z̄ with Σz is of interest. The possible bias intro-

duced by using a symmetric distribution for what in reality

is an asymmetric distribution is neglected. The purpose is

to show that the general heteroscedastic model of eq. 6 and

7 is to be preferred and will cause an unbiased HEIV esti-

mate.

In order to generate noise that is symmetric and at the

same time mimics stereo-reconstruction noise the following

approach has been chosen. The artificial points ūi.....ū150

were generated homogenously within the space defined by

the optical center of the left camera and the first image quad-

rant, see fig. 1.a. The distances of the generated landmarks

ranged from 5 m to 150 m. The points v̄i.....v̄150 were then

generated by transforming ūi.....ū150 with the groundtruth

motion R̄ and t̄. These 3D points were projected onto the

imaging planes of a simulated stereo-camera and Σ̄v̄i
and

Σ̄ūi
were calculated using eq. 9 and 10. For each point

a random perturbation, drawn from either N (0, Σ̄v̄i
) or

N (0, Σ̄ūi
), was added to the true 3D landmark locations

resulting in vi and ui. The noisy landmark locations were

then also projected onto the imaging planes of the stereo-

camera and from these Σvi
and Σui

were estimated us-

ing eq. 9 and 10. Then two motion estimates were ob-

tained, one using HEIV (v, Σ̄v̄,u, Σ̄ū) and another one

using HEIV (v,Σv,u,Σu). The experiment was repeated

one thousand times for each of nine different motions. The

result are shown in fig. 2. It can clearly be seen that us-

ing the general heteroscedastic model of eq. 6 and 7 results

in an unbiased motion estimate. In contrast to this, mod-

eling Σ̄z̄ with Σz introduces bias. As can be seen in fig.

2, this bias is relatively small. When many of these biased

relative-pose estimates are integrated to track the absolute-

pose, however, they will cause significant drift.

5.2. Simulated stereo­noise

In this section the stereo-reconstruction noise will be

modeled more accurately. Furthermore, the effectiveness

of the proposed bias reduction technique on simulated data

will be presented.

The artificial landmarks ūi.....ū150 and v̄i.....v̄150 were

generated similarly to sec. 5.1. For this experiment also
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Figure 2. Bias in estimated parameters for motions with a con-

stant heading of 1 degree and increasing translation over z-axis, us-

ing HEIV (v,Σv,u,Σu) a,b and using HEIV (v, Σ̄v̄,u, Σ̄ū)
c and d.

different image quadrants were used i.e. quadrant 2 and

quadrant 3, see fig. 1.a. By doing so, the dependency of the

bias on the landmark distribution can be visualized. A real-

world example of a situation in which the landmarks are not

homogenously distributed is shown in fig. 1.b. Again the

landmarks were projected onto the imaging planes of a sim-

ulated stereo-camera. Now, however, isotropic i.i.d. gaus-

sian noise (with standard deviation of 0.25 pixel) is added

to the image projections. By using stereo-reconstruction,

on the basis of these noisy image points, the landmark po-

sitions are estimated resulting in ui.....u150 and vi.....v150.

Also Σvi
and Σui

were estimated, using eq. 9 and eq. 10,

from the noisy image points. Again a motion estimate is

generated with HEIV (v,Σv,u,Σu) and the experiment

is repeated one thousand times for nine different motions.

The results for different landmark distributions is shown

in fig. 3. The result of applying the bias reduction tech-

nique of sec. 4 is shown in fig. 4. The used bias gains

(ωx, ωy, ωz, ωp, ωh, ωr) were all set to 0.8. The bene-

fit of the proposed bias reduction technique is clearly vis-

ible. Important is the fact that the mean absolute error in

motion parameters did not change by using the bias reduc-

tion technique. The error in translation was approximately

x=1.0 mm, y=1.2 mm and z=3.0 mm and the error in ro-

tation angles for pitch=3 · 10−3 ◦, heading=2 · 10−3 ◦ and

roll=7 · 10−3 ◦ for all experiments. Furthermore, the graphs

from fig. 3 visualize the effect of true motion and the land-

mark distribution on the bias. Interestingly, from fig. 3 and

the image quadrant and axis conventions from fig. 1.a, it

can be seen that the bias causes a rotation slightly towards
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Figure 3. Effects of estimator bias for a motion with a constant

heading of 1 degree and increasing translation over z-axis. Bias

in translation (left images), bias in rotation (right images), land-

marks only in image quadrant 2 (top images) and landmarks only

in image quadrant 3 (bottom images).
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Figure 4. Results of the proposed bias reduction method for a mo-

tion with a constant heading of 1 degree and increasing translation

over z-axis. Bias in translation (left images), bias in rotation (right

images), landmarks only in image quadrant 2 (top images) and

landmarks only in image quadrant 3 (bottom images).

the landmarks and a translation slightly away from the land-

marks.

6. Results on real-world data

To show the applicability of the proposed bias reduc-

tion technique it has been tested on a challenging 5 km ur-

ban data-set. To our knowledge it is currently (one of) the

largest urban data-sets used for relative-pose based visual-

odometry research. Many possible sources for outlier land-

marks, such as moving cars, trucks and pedestrian, are in-

cluded in the data-set. An impression of the approximately

19000 images in the data-set is given in fig. 5. The data-

Figure 5. Impression of different images from the used 5 km long

urban data-set.

set was recorded using a stereo-camera with a baseline of

40 cm and an image resolution of 640 by 480 pixels run-

ning at 30 Hz. The correct values for the real-world bias

gains (ωx, ωy, ωz, ωp, ωh, ωr) were obtained by manual se-

lection, such that the loop in the calibration data-set, see

fig. 6, was approximately closed in 3D. These exact bias

reduction gains were then used for the 5 km trajectory. A

minimal estimated distance of 30 cm is enforced on-line be-

tween frames. If two successive frames do not reach this

distance, the latest of these frames is dropped. The process

results in approximately 14500 relative-pose estimates for

the 19000 images in the data-set. The driven trajectory is

obtained by integrating all the relative pose estimates, the

results are visualized in fig. 7. Probably, the most signifi-

cant improvement is in the estimated height profile, see fig.

8. Due to systematic bias in the estimated roll angle the tra-

jectory without bias reduction spirals downward. By com-

pensation the bias in roll, using the proposed technique, this

spiraling effect is significantly reduced. Due to these biased

rotation estimates the error in the final position as percent-

age of the traveled distance, when not using the bias reduc-

tion technique, was approximately 20%. This reduced to

1% when the proposed bias reduction technique was used.

The relative computation time of the most intensive pro-

cessing stages were approximately, 45% for image-feature

extraction and matching and 45% for obtaining the robust

motion estimate. The relative computation time of the bias

reduction technique was only 4%.
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Figure 6. Calibration data-set, of approximately 800 m, used to ob-

tain the appropriate bias gains. DGPS based groundtruth (green),

HEIV on inlier landmarks (red) and HEIV using the manually

tuned bias reduction technique (blue).

7. Conclusion

This contribution addresses possible sources of structural

errors i.e. bias in stereo based relative-pose estimation. Bias

in the relative pose estimates can lead to significant drift

when they are integrated to track the absolute-pose of the

stereo camera. In relation with the Heteroscedastic Error-

In-Variables estimator two sources of bias are identified.

Firstly, approximating the noise distribution of the stereo re-

constructed landmarks using the observations instead of the

true landmark locations. Secondly, neglecting the skewness

of the landmark reconstruction uncertainty. For the first

source a novel bias reduction technique is presented that

significantly reduces the structural error in stereo-vision

based motion estimation. The benefit of this approach is

most apparent when the relative-pose estimates are inte-

grated to track the absolute-pose of the camera, as is the

case with visual-odometry. The work presented in this con-

tribution mainly identifies the existence of bias and, most

importantly, the sources of bias for stereo based relative-

Figure 7. Results on the 5 km urban trajectory. DGPS based

groundtruth (green), HEIV on inlier landmarks (red) and HEIV

using the calibrated bias reduction technique (blue).
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Figure 8. Estimated height profile of the 5 km. urban trajectory on

relatively flat terrain.

pose estimation. The solution proposed must be seen as

a first attempt to overcome the bias problem. Clearly, in

future work we will investigate other possible solutions to

reduce bias in the motion estimates. Especially, providing

a solution that does not depend on the bias gains has our

priority.
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