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Abstract

Segmentation of document images remains a challenging
vision problem. Although document images have a struc-
tured layout, capturing enough of it for segmentation can
be difficult. Most current methods combine text extraction
and heuristics for segmentation, but text extraction is prone
to failure and measuring accuracy remains a difficult chal-
lenge. Furthermore, when presented with significant degra-
dation many common heuristic methods fall apart. In this
paper, we propose a Bayesian generative model for docu-
ment images which seeks to overcome some of these draw-
backs. Our model automatically discovers different regions
present in a document image in a completely unsupervised
fashion. We attempt no text extraction, but rather use dis-
crete patch-based codebook learning to make our proba-
bilistic representation feasible. Each latent region topic is
a distribution over these patch indices. We capture rough
document layout with an MRF Potts model. We take an
analysis-by-synthesis approach to examine the model, and
provide quantitative segmentation results on a manually-
labeled document image data set. We illustrate our model’s
robustness by providing results on a highly degraded ver-
sion of our test set.

1. Introduction
We examine the problem of segmenting document im-

ages into text, whitespace, images, and figures through un-

supervised learning methods. Many methods currently exist

for performing text extraction and segmentation for OCR

[7, 10]. The main drawback of these methods is that they

largely rely on heuristics to separate the different regions

from a given document image. Common heuristic methods

are generally not descriptive enough to capture the signifi-

cant variance often present between different document im-

ages. Furthermore, most document segmentation methods
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Figure 1. We propose an unsupervised model in which we learn a

set of latent topics over image regions to perform document seg-

mentation. We perform three steps as illustrated in the pipeline

above: codebook learning, latent topic inference, and MRF

smoothing to better estimate the layout. When all this is done we

have a final segmentation of a given document image.

require high quality scans of the pages. Hence, the presence

of significant noise or degradation found in low-resolution

video or cell phone images, causes many common methods

to fall apart. Unsupervised methods are desirable in this

context because they do not involve a great deal of domain

specific training knowledge, and ground truth is not nec-

essary. For example, the same methods we propose could

work on technical articles (as we discuss here), newspapers,

magazines, etc.

We propose an unsupervised model that, rather than

seeking to perform text extraction, breaks each document

down into reasonably sized image patches to perform dis-

crete patch-based image coding (refer to figure 1 to see

these steps graphically). Using the codebook obtained from

this process we can represent each image as a bag of these

codewords and then learn latent topic distributions over

these codewords for each document in the corpus. We ex-

pect in this latent discovery of topics that the model dis-

tributes them in a way that is semantically meaningful. In

other words, each topic will correspond to regions of docu-

ment images that are visually similar. Finally, we model the

layout of the documents using a Potts MRF energy model

with high-order energy terms to encourage the kind of lay-
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out we expect. We note that our model is unsupervised in

every aspect except the final translation from topic-mapped

images to final label images which requires a small amount

of manually labelled images to reference. After discussing

the model we then take an analysis-by-synthesis approach

judge its ability to capture layout and demonstrate its main

application to segmentation. We conclude by testing ro-

bustness by applying the same model to highly degraded

document images. Due to its unsupervised nature, compar-

ing to existing heuristic methods is difficult, but we provide

quantitative results by testing our model on a test set of 100

manually-labeled document images, and show robustness in

the presence of severe degradation.

2. Background
One early method for document segmentation into more

than two region types is [8]. The authors use different

thresholding techniques and histogram features as input to

a neural network in order to classify the different regions.

Similarly, [12] use modified heuristic edge following meth-

ods to efficiently segment document images for explicit

OCR. This second approach is not able to identify more re-

gions than just text and whitespace, as we have proposed.

Some approaches to document segmentation focus on

specific features of the image or identifying word blocks

in order to perform classification and obtain segmentation

results. One such approach [13] uses matched wavelet fil-

ters and Fisher classifiers to estimate a three class image la-

beling problem: text, background, and picture. Another ap-

proach [21] uses a set of filter and histogram features in con-

junction with Fisher classifiers to identify and distinguish

text regions for handwritten and machine printed text. Both

of these methods then use an MRF post-processing step

to smooth out as many misclassifications as possible. Al-

though these approaches are learning-based, they still rely

on large amounts of pre-processing and a fully annotated

training set to perform the supervised learning step.

Another way to view the task of document segmentation

is as a texture modeling problem. In this context we seek a

descriptive/generative model that can learn patterns of tex-

tures present in the document image. In one of the earlier

works to examine texture in document images [9, 19], the

authors examine the texture of different document images

through the use of multichannel filtering based on Gabor

filters in order to identify textual regions. Although many

recent and sophisticated models exist to model textures in

images, such as [22], they fail to represent the kind of in-

homogeneous texture which we find present across the dif-

ferent regions of a document image and remain too com-

putationally expensive to be of any practical value. Some

approaches like [5] seek to get around this by using non-

parametric sampling in the synthesis process based on im-

age windows rather than local pixel relations, but the meth-

ods are not yet sufficiently advanced.

Topic Models have been left largely unused in document

image analysis—to the best of our knowledge, we are the

first paper to propose using unsupervised topic models in

the document imaging domain. In their original paper, Blei

et al. [3] discuss a few applications of their model (which

they call LDA) to various discrete corpora: document mod-

eling (textual), document classification, and collaborative

filtering. Given the current trend to use some form of code-

book over image data sets, it is surprising that very few au-

thors have applied this model in the imaging domain. One

exception is Fei-Fei et al. [6], who transfer the model into

the image domain and add one more hidden variable to

perform scene categorization. Another application can be

found in [15] in which the authors improve upon the topic

model’s inability to capture spatial localization. This lack of

localization is the biggest problem in applying these models

successfully to images which, unlike text corpora, contain

considerable spatial information. Their early success of ap-

plying topic models in imaging has laid the ground-work for

our work. They provide a good example of how the model

could work. However, their approach is not directly appli-

cable since we are interested in unsupervised segmentation.

3. The Model

We now describe each part of our model’s “pipeline” as

given in figures 1 and 2. Starting in section 3.1 we present

our codebook learning approach. In section 3.2 we illustrate

how topic models are applied to our problem. Finally, in

section 3.3 we impose some layout through a high-order

Potts MRF model.

Image 
Patches

PCA 
Patches

Codebook

Encoded Images

Figure 2. Codebook Learning Process: We take raw image

patches, perform PCA over a large set, and run k-Means to get

a set of k codewords which can encode our images.
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Figure 3. A codebook consisting of 150 codewords (centroids pro-

duced by the K-Means algorithm). The gray effect is due to the

averaging effect the PCA process has on the patches when sub-

tracting the empirical mean.

3.1. Codebook Learning

Codebook learning is closely related to vector quantiza-

tion [14] and is used to obtain a lower dimensional embed-

ding of an image. In the imaging domain typically these

kinds of codebooks consist of image descriptors or patches.

A number of papers propose using codebooks for features

in a larger model in areas like object recognition and cat-

egorization [4, 11, 17, 20]. An approach based on texture

given in [16] makes use of filter-based “textons” to trans-

form an image into a texture map. In [6], the authors learn a

codebook using patches on a sliding grid in random scales.

Almost all of these methods use some clustering algorithm

like K-Means in order to learn the basis from which to form

their codebook.

We adopt such a learning scheme for our codebook.

Since we are interested in modeling document images

which are generally very linearly organized, we choose our

features to be small 16x16 image patches arranged on a reg-

ular, rectangular grid over the entire document image. Since

all of our document images are roughly 800x600 pixels, this

patch size is large enough to capture the structure of individ-

ual words and other features of a document while not being

so large that we lose overall descriptiveness.1 These im-

age patches pi are transformed into feature vectors and are

combined into a single data set X = {p1, p2, ..., pn}. The

principle components of this data set are then determined

via a PCA transformation Y = PCA{X} which also then

reduces the dimension of the patches. Once we have this,

we apply K-Means for unsupervised clustering. K-Means

produces a set of vectors which represent the k centroids of

the model. This set of centroids C = {c1, ..., ck} represents

our codebook where each i is a “codeword” which indexes

some ci.

1In the degraded, low-resolution experiments we reduce the patch-sizes

comparably (see section 5)

Figure 4. Encoded representations of two different document im-

ages (one per row). The first column are the images themselves,

the second are the encoded images (with colors randomly assigned

to each codeword), and the third are the reconstructed images con-

sisting of the representative patches of each codeword on the im-

age lattice.

After learning a codebook we can then define a docu-

ment image over a lattice of codewords where each code-

word represents an individual image patch. For an aver-

age document size of roughly 800x600 pixels this repre-

sents roughly a reduction of about 300 times. In addition,

we expect to have captured much of the spatial interactions

among individual pixels in a similar manner even to that ob-

tained by filter banks. When representing a given patch pi

as a codeword from our model we choose the closest code-

word in a Euclidean sense:

wpi
= argmin

k

{√
(pi − ck)2

}
(1)

From figure 3 we see that the codeword patches resemble

the kinds of responses one might observe from filter appli-

cation to text. Figure 4 illustrates two document images and

their representative encodings under the codebook in figure

3. Much of the perceptual qualities of these images are pre-

served under the embedding.

3.2. Topic Models for Document Images

Latent Dirichlet Allocation [3] (LDA) or Topic Models,

is a method used for modeling collections of discrete data

such as text corpora. We observe that our encoded docu-

ment images can essentially be represented as discrete col-

lections of codewords. We hence adopt the notation from

the LDA model in what follows.

The following are the terms we use in our document im-

age topic model:
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Figure 5. Graphical model for LDA (Topic model). Outer plate

represents M documents, while the inner represents repeated N

topic/word choice per document.

• A codeword wpi
∈ {1, ..., k} is our fundamental unit

of discrete data.

• A document (image) is a sequence of N codewords

denoted by w = {wp1 , wp2 , ..., wpN
}.

• A corpus is a collection of M documents (images) D =
{w1, w2, ..., wM}.

Figure 5 illustrates the following generative process

graphically:

1. Choose θ ∼ Dir(α)

2. For each of the N codewords wpi
:

a) Choose a “topic” zi ∼ Multinomial(θ)
b) Choose a codeword wpi

∼ p(wpi
|zi, β)

A t-dimensional Dirichlet random variable has the fol-

lowing probability density over the (t− 1) simplex [3]:

p(θ|α) = Γ(
∑t

i=1 αi)∏t
i=1 Γ(αi)

θα1−1
1 · · · θαt−1

t (2)

The Dirichlet distribution is conjugate to the Multinomial

distribution.

Given the hyper-parameters α and β, we can express the

joint distribution of a topic mixture θ, a set of N topics z,

and a set of N codewords w which they generate as [3]:

p(θ, z, w|α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β) (3)

The probability of a corpus is then derived to be:

p(D|α, β) =
M∏

d=1

∫
p(θd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd

(4)

Inference is made difficult due to the coupling of certain

hidden variables so variational inference is employed. Full

derivations are available in the original paper [3].

In the context of our model, the parameters β and α are

the mixing parameters of the Dirichlet distribution. θ is the

distribution over image regions like text and whitespace for

each document image, and z is the distribution of image

codewords within each distinct image region (topic).

We expect that by applying this model it will be able

to cluster data based on these latent “topics.” In this case

topics are meant to represent the distribution of codewords

typically found in distinct document image regions. By lim-

iting the number of topics to those typically found such

as whitespace, text, images, and figures, the topic model

will then discover these regions by grouping codewords that

have similar appearance.

3.3. Incorporating Layout through MRF

We introduce a Potts-like MRF model to constrain some

of the expected layout of the topics (document regions). Al-

though such a local MRF-based model cannot capture the

full gamut of global layout, we design a set of high-order

potential functions that encourage that expected local struc-

ture. In a document image, regions of text, background, or

figures are often found in homogenous blocks. Therefore,

we want to define a local energy function which seeks to

promote these kinds of structures within a sample image.

Figure 6. Local neighborhood Potts energy model for topics.

White dots are the local first order neighbors (eq. 5). Dark red

is the corner penalty (eq. 6) to encourage sharp edges. The large

light red area is the second-order neighborhood (eq. 7) penalty to

encourage larger regions.

We define the local energy in a Potts-like model with

some extra higher-order interaction penalties. The Gibbs
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energy has the following form:

H(x) = γ1

∑
s∼t∈∂x

δ(xs, xt) (5)

+ γ2

∑
s∼t∈C

δ(xs, xt) (6)

+ γ3

∑
s∼t∈∂2x

δ(xs, xt) (7)

− γ4 log (P (xs|s)) (8)

Note that in the above equations ∂x are the first-order neigh-

borhood, C represents each surrounding corner, and ∂2x are

the second order neighbors. Each term contains a δ func-

tion which activates a penalty if the neighbor or neighbors

in question are not equal to xs. This is the same as the δ
function in a standard Potts model. Equation 4 is a standard

first-order penalty just as in a Potts model, while equations

5 and 6 are designed to encourage sharp corners (to make

regions more square as they would be in typical machine

printed document) and encourage larger regions. Obviously

this model would have to be adjusted for handwritten text

and assumes that ground truth is viewed in this regular fash-

ion. We feel, however, that this assumption is reasonable

given the nature of document images. The final term is sim-

ply the likelihood of finding a particular topic at a specific

lattice location s.

4. Dataset and Inference
Essentially, what we have proposed is a three step mod-

eling framework through which we will obtain our results:

1. Learn the codebook;

2. Estimate the Topic Model;

3. Apply the MRF layout Model

Our data set consists of 1780 total document images

from which we label 100 to use as a test set for quan-

titative segmentation results (keep in mind that since our

model is unsupervised we did not need to do this for train-

ing). We cut each of our 1680 total training document im-

ages up into 16x16 patches and select a random subset of

all those patches. We end up with approximately 175,000

image patches on which we perform PCA and input to the

K-Means algorithm. The output of this algorithm is a set of

codewords which we will use to encode each document im-

age. Since we are interested in segmenting whitespace, text,

figures, and images, we use a four topic model. After learn-

ing the topic model we infer the best topic distributions for

the 100 test document images. Once we have the learned

topic model we compute a simple maximum likelihood so-

lution P (ti|wj , w) representing the probability of topic ti

being responsible for observing codeword wj in document

w. This gives us a preliminary segmentation of each image

in the test set. In order to improve upon this and impose the

MRF layout proposed, we then run each image through sim-

ulated annealing using a cooling schedule of T = T0
TN

T0

i/N
.

Each instance of the Gibbs sampler is run for five iterations

which proves to converge in a short amount of time. Simu-

lated annealing is practical here due to the small lattice size

after we encode the images. Once this converges we com-

pute segmentation results by expanding each location of the

topic lattice to a 16x16 grid and calculating accuracy at the

pixel level. To analyze the model’s robustness on grossly

degraded images, we down sample our test images to 80x60

resolution and perform the same process. Since some of the

documents in our data set are already of lower quality al-

ready, this degradation is amplified. We do this since these

low-quality, low-resolution images are what one would find

by performing recognition or segmentation of documents

from video in a larger office scene, for example.

5. Results
We present our results on the original and degraded doc-

ument images by i) an analysis-by-synthesis investigation

and ii) a quantitative comparison to manual annotation.

5.1. Synthesis

In figure 7 we show the results of our synthesis proce-

dure with different numbers of topics. Values for γ1, γ2, γ3,

and γ4 were set empirically by manually determining what

settings produced the best quantifiable segmentation results

on the training set. The balance between the gamma values

is a crucial aspect of the MRF sampling process. If the em-

phasis on local evidence via γ4 is too large then the border

tends to invade too far into the center of each document. If

layout and smoothness is preferred via γ1, γ2, and γ3 then

synthesized documents tend to look more random. With a

good balance we find regions like that shown in column 1 of

figure 7. These regions are very close to the kind we expect.

Between different topic models it is clear that the effect

of the MRF model is different. The better looking model in

terms of the layout produced by the MRF seems to be the

four topic model, however, the final sampled image appears

more random. The five topic model seems to show a better

balance in terms of both layout and final results.

In terms of the learning for the topic model itself, the

initial parameters seem to have little effect of the final re-

sults of the synthesis procedure. We learned all the models

represented here with an initial setting for α of 0.1.

The layout that is sampled here is promising, but clearly

none of the sampled documents in column three contain

enough structure. This is expected, however, since our main

goal here is segmentation and not layout analysis. The vari-
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Figure 7. Two synthesized documents from a 4 topic model (top

two rows) and two from a 5 topic model (bottom two rows). Col-

umn one is the topic map sampled from the MRF model, column

two are the sampled images from these topics shown in encoded

form, and the third column shows the representative documents

ability in layout produced by slight modification of the MRF

parameters indicates that the model is too sensitive to small

local interactions to accurately model the global layout.

5.2. Segmentation

We now turn our attention to the main focus of our pa-

per. We use the maximum likelihood distributions p(ti|wj)
inferred from the topic model as evidence. Since the al-

gorithm is unsupervised we then manually determine the

mapping from topics to ground truth and compute segmen-

tation accuracy on a pixel-by-pixel basis (note that this is the

only “supervised” portion of the model). We perform seg-

mentation for codebook sizes ranging from 30 codewords to

150 codewords. Furthermore, for each codebook we com-

pute a different segmentation for both a four and five topic

model to see if there is any significant difference. Finally,

we demonstrate the robustness of our model on the same set

of images degraded by down-sampling to 80x60 resolution.

Figure 8 is a graph of pixel accuracy of the two models

as the codebook size increases. The solid and dashed lines

represent the segmentation with applied layout via simu-

lated annealing, while the other two represent a simple max-

likelihood result for each codebook. All of the models do

very well given their completely unsupervised nature, but

the MRF layout provides both more consistency across all

codebook sizes as well as general performance improve-

ments. This graph also surprisingly seems to indicate that

there is no real advantage of one codebook size over an-

other (at least with annealing). This might mean that re-

gardless of any possible redundancy in the codebook, the

topic model is not affected at least up to the size we ex-

plored. The four topic model also appears to very slightly

outperform the five topic model for most codebook sizes,

but the difference is not substantial which seems to indicate

that using the method we’ve proposed there is a limit to how

much the topic model can discover.

Table 1 provides an example confusion matrix for the

entire 100 document test set. The figure and image classes

are combined because upon observing the results we no-

ticed that the figure class is rarely distinguished under the

topic model. This most likely has to do with an inabil-

ity of the topic model to distinguish these regions due to

their sparse nature since they are comprised primarily of

graphs and drawings which contain thin lines and consider-

able whitespace. Despite these drawbacks the model does

well enough with all the other classes to still achieve almost

90% total pixel accuracy.

Figure 9 contains ten examples of automatically seg-

mented document images. At a high-level, our segmenta-

tions are accurate as the sums in Table 1 indicate. But, there

are a few places where the MRF model has over-smoothed

and we can see that the figure class is generally left undis-

covered. The seventh document in the figure is most likely

the worst since the original image was degraded enough to

where it was not obvious if the three image regions were

even images or just figures. Examples like this are very few

and, in fact, even in the presence of significant degradation

we see still good results. If we turn our attention to the sec-

ond part of figure 9 we see how well our model does on

the same set of images degraded to 80x60 resolution. The

model performs at 80% total pixel accuracy even at this low

WS Text Fig/Im

WS 65.19 34.74 0.07

Text 10.89 89.10 0.009

Fig/Im 39.76 32.54 27.70

Table 1. Confusion matrix for the four topic model over 70 code-

words. The table shows the percentage of total pixels from the test

set and how they are classified. The figure and image class are

shown together here because the figure class is rarely classified

(either correctly or incorrectly).
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Figure 8. A graph of segmentation accuracy as codebook size in-

creases.

level of resolution which illustrates our model’s robustness

and flexibility. Finally, we provide an example segmenta-

tion on all eight pages of this document (see figure 10) to

illustrate how well the model does on data completely out-

side of the initial training and test set.

Although we do not have direct access to the data sets

used, we can roughly make note of our method in relation

to existing ones. In [1] most of the methods discussed ob-

tain no more than 60% accuracy in general on the different

classes of data under their defined EDM (Entity Detection

Metric). We use a more raw approach; it seems promising

that with about 90% accuracy we would do at least compa-

rably.

6. Conclusions and Future Work

We have proposed a framework for segmentation of doc-

ument images and presented results through synthesis and

quantitative segmentation on a test set of example document

images. Our model shows considerable promise, particu-

larly due to the fact that it is largely unsupervised in its ap-

proach and in how well it holds up under significant degra-

dation. Some details, such as the lack of detection of figure

regions, demonstrate the need for a more advanced topic

model which takes spatial information into account. Pos-

sibly providing more context and background information

might help to enhance the model as well, although if this

was relied upon too much we could lose the advantage of

the unsupervised approach. We will consider training the

model on specific document types and formats (eg. jour-

nal and conference formatting, etc) and possibly breaking

it down into page type (eg. front page, reference page, etc)

and learn separate models for each.

There are a number of extensions to the topic model it-

self that could be explored. Correlated topic models [2]

might introduce interesting dependencies between topics

(perhaps in an effort to learn more structural information),

and author-topic models [18] could be explored in an effort

to perform document recognition. Although clearly there

is much room for extension, the most important contribu-

tion of this paper is the demonstration of accurate unsuper-

vised segmentation of normal and degraded document im-

ages without heuristics.
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