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Abstract

Discovering the underlying low-dimensional latent
structure in high-dimensional perceptual observations
(e.g., images, video) can, in many cases, greately im-
prove performance in recognition and tracking. How-
ever, non-linear dimensionality reduction methods are
often susceptible to local minima and perform poorly
when initialized far from the global optimum, even
when the intrinsic dimensionality is known a priori.
In this work we introduce a prior over the dimen-
sionality of the latent space that penalizes high dimen-
sional spaces, and simultaneously optimize both the la-
tent space and its intrinsic dimensionality in a contin-
uous fashion. Ad-hoc initialization schemes are unnec-
essary with our approach; we initialize the latent space
to the observation space and automatically infer the
latent dimensionality. We report results applying our
prior to various probabilistic non-linear dimensionality
reduction tasks, and show that our method can outper-
form graph-based dimensionality reduction techniques
as well as previously suggested initialization strategies.
We demonstrate the effectiveness of our approach when
tracking and classifying human motion.

1. Introduction

Many computer vision problems involve high dimen-
sional datasets that are computationally challenging to
analyze. In such cases it is desirable to reduce the di-
mensionality of the data while preserving the original
information in the data distribution, allowing for more
efficient learning and inference. Linear dimensional-
ity reduction techniques (e.g., PCA) have been very
popular in the past, due to their simplicity and effi-
ciency. However in practice, as shown below, they can
result in poor approximations when dealing with com-
plex datasets.

Graph-based methods, e.g., LLE [19] and Isomap

[21] exploit local neighborhood distances to approxi-
mate the geodesic distance in the manifold. They have
been shown to be very effective when dealing with large
datasets that are homogeniously sampled. However,
as demonstrated here, they suffer in the presence of
noisy and sparse data. Unfortunately, a large set of real
world computer vision datasets are sparse. Human mo-
tion datasets comprise small numbers of examples from
different subjects performing different activities [2, 11].
While these databases are typically densely sampled in
time, they are sparse in the motion style and activity
type. Object recognition databases [1], also suffer from
sparsity: only a few objects are labeled for categories
with large variation in appearence.

Non-linear probabilistic models, such as the GPLVM
[13], can recover complex manifolds. They have re-
ceived considerable attention in recent years, having
been applied to human motion tracking [25, 23, 14, 10],
detection [3, 18, 7], 3D shape estimation [20] and char-
acter animation [6, 24]. However, they have only been
applied to small databases typically composed of very
few examples of a single activity [25]. Moreover, the
latent dimensionality was either chosen by the user
[25, 23, 14] or optimized by cross-validation [20], which
is computationally expensive.

While their representation power is desirable, such
methods suffer from local minima, since they rely on
optimization of complex non-linear functions that are
generally non-convex. Even with the right dimension-
ality, if initialized far from the optimum, they can re-
sult in poor representations [24]. Factors which con-
tribute to this include the distortion introduced by the
initialization and the non-convexity of the optimiza-
tion. This is aggravated when optimizing extremely
low-dimensional latent spaces (e.g. 2D or 3D), which
is typically the case in applications such as tracking
[25].

In this paper we present a new learning paradigm
that reduces the problem of local minima by perform-
ing continuous dimensionality reduction. In contrast to
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previous GPLVM-based approaches, no distortion is in-
troduced by an initialization step in our approach, since
the latent coordinates are initialized to be the original
observations. By introducing a prior over the dimen-
sionality of the latent space that encourages sparsity of
the singular values, our method is able to simultane-
ously estimate the latent space and its dimensionality
while keeping flexibility.

Regularization via sparsity has recently become a
focus of attention in the machine learning and vision
communities, and has been applied to feature selection
for linear dimensionality reduction, e.g. Sparse PCA
[28], or transfer learning [17]. Here we are interested
in learning non-linear low-dimensional latent spaces; to
our knowledge, ours is the first non-linear dimensional-
ity reduction technique that penalizes the latent space
rank and simultaneously optimizes the structure of a
non-linear latent space as well as its intrinsic dimen-
sionality.

In the remainder of the paper we first briefly re-
view latent variable models. We then show how to
incorporate a rank prior in the optimization of a non-
linear probabilistic model, and demonstrate our ap-
proach when tracking and classifying complex artic-
ulated human body motions.

2. Background: Latent Variable Models

Latent Variable Models (LVMs), e.g., Probabilistic
PCA [22], assume that the data has been generated
by some latent (unobserved) random variables that lie
on or close to a low-dimensional manifold. Let Y =
[y1, · · · ,yN ]T be the set of observations yi ∈ ℜD, and
let X = [x1, · · · ,xN ]T be the set of latent variables
xi ∈ ℜQ, with Q ≪ D. Probabilistic LVMs relate
the latent variables to a set of observed variables via a
probabilistic mapping, y(d) = f(x) + η, with y(d) the
d-th coordinate of y, and η ∼ N (0, θ3) iid Gaussian
noise.

The Gaussian Process Latent Variable Model
(GPLVM) [13] places a Gaussian process prior over the
space of mapping functions f . Marginalizing over f

and assuming conditional independence of the output
dimensions given the latent variables results in

p(Y|X) =
D
∏

d=1

N (Y(d)|0,K)

where Y(d) is the d-th column in Y, and K is the co-
variance matrix, typically defined in terms of a ker-
nel function. Here we use an RBF + noise kernel,

k(xi,xj) = θ1 exp
(

−‖xi−xj‖2

2

2θ2

2

)

+ θ3δij , since it allows

for a variety of smooth, non-linear mappings using only
a limited number of hyperparameters, Θ = {θ1, θ2, θ3}.

Learning is performed by maximizing the posterior
p(X|Y) ∝ p(Y|X)p(X) with respect to the latent vari-
ables X and the kernel hyperparameters Θ. p(X) en-
codes prior knowledge about the latent space X.

PCA and graph-based techniques are commonly
used to initialize the latent space in GPLVM-based
dimensionality reduction; both offer closed-form solu-
tions. However, as shown below, PCA [16] cannot cap-
ture non-linear dependencies, LLE [19] gives a good
initialization only if the data points are uniformly sam-
pled along the manifold, and Isomap [21] has difficulty
with non-convex datasets [9]. Generally, when initial-
ized far from the global minimum, the GPLVM opti-
mization can get stuck in local minima [13, 24].

To avoid this problem different priors over the la-
tent space have been developed. In [27] a prior was
introduced in the form of a Gaussian process over the
dynamics in the latent space. This results in smoother
manifolds but performs poorly when learning stylistic
variations of a motion or multiple motions [24]. In [24]
a prior over the latent space was proposed, inspired
by the LLE cost function, that encourages smoothness
and allows the introduction of prior knowledge, e.g.,
topological information about the manifold. However,
such prior knowledge is not commonly available, reduc-
ing considerably the applicability of their technique. In
contrast, in this paper we introduce a generic prior that
requires no specific prior knowledge, directly penalizing
the dimensionality of the latent space to learn effective
low-dimensional representations.

3. Continuous Dimensionality Reduc-

tion via Rank Priors

In this section we introduce a continuous dimen-
sionality reduction technique that initializes the latent
space to the observation space to avoid initial distor-
sions, and learns the latent space and its dimensionality
by introducing a prior that penalizes latent spaces with
high dimensionality. Therefore we perform a two-stage
optimization process where in the first stage only X is
optimized using the rank prior. In the second stage Θ
is optimized while keeping the dimensionality fixed.

The dimensionality of the latent space can be de-
scribed by the rank of the Gram matrix of the latent
coordinates, which can be computed as the number of
non-zero singular values of X. However, it is difficult to
enforce directly a prior on the rank since it is a discrete
quantity.

Instead, we propose a relaxation that results in a
penalty function which gradients are continuous and
can be easily computed. In particular, we introduce a
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Figure 1. Comparison of our Rank Prior with a GPLVM initilized to PCA: The goal is to recover the 1D manifold
in a 2D space. The GPLVM gets stuck in local minima very early (upper row) since PCA initialization does not capture
non-linear dependencies, whereas our method decreases dimensionality gradually and recovers the correct manifold (lower
row).

prior of the form

p(X) =
1

Z
exp

(

−α

D
∑

i=1

φ(si)

)

(1)

where si are the normalized singular values of the
mean-subtracted matrix of latent coordinates, with D

the dimensionality of the latent space, and Z a normal-
ization constant1.

Different penalty functions φ can be considered.
Common choices for sparsity are the power family and
the (generalized) elastic net [4]. In the power family

φ(si, p) = |si|p (2)

sparsity is achieved for p ≤ 1. The L2 norm (i.e., p = 2)
is a well studied penalty, but does not encourage spar-
sity. It is equivalent to a Gaussian prior over the sin-
gular values in (1). The most commonly used penalty
that encourage sparsity is the L1 norm (i.e., p = 1),
that results in a Laplace prior over the singular val-
ues in Eq. (1). This case is in general attractive since
the penalty function is linear, and when the objective
function is also linear the optimization can be effec-
tively solved with a Linear Program, even with large
number of variables [17].

However here we are interested in learning non-
linear latent spaces; our objective function is non-linear
even when φ is linear. In particular, we minimize the
negative log posterior

L =
D

2
ln |K| + D

2
tr(K−1YYT ) + α

D
∑

i=1

φ(si) , (3)

1Note the fact that this is an improper prior has no impact

on the optimization process.

where α controls the influence of the penalty in the
optimization and thus the speed of convergence. In
practice we noticed that the algorithm performs quite
well for a wide range of α’s. We obtained good per-
formance for α ∈ (1, 10). Of particular interest to us
are functions φ that drive small singular values faster
towards 0 than larger ones. Examples of such func-
tions are the power family with p < 1, logarithmic and
sigmoid functions. We use a logarithmic prior for all
of our experiments since converges faster to a sparse
solution.

The derivatives of our rank prior (third term in Eq.
(3)) with respect to the latent coordinates X are

∂

∂Xij

(

D
∑

m=1

φ(sm)

)

=
1√

N − 1

D
∑

m=1

∂φ(sm)

∂sm

UimVjm ,

(4)
where we have used the fact that the derivatives of
the normalized singular values with respect to the la-
tent coordinates can be easily computed as ∂sm

∂xij
=

1√
N−1

UimVjm [15], with U the matrix of left-singular

vectors, and V the matrix of right-singular vectors of

X. The value of ∂φ(sm)
∂sm

depends on the sparsity func-
tion and the derivatives of the first two terms in Eq.
(3) with respect to the latent coordinates X and the
kernel hyperparameters Θ are given in [13].

Minimizing Eq. (3) results in a reduction of the
energy of the spectrum (since the singular values are
minimized). To prevent this from happening, one can
instead solve a constrained optimization problem such
that the energy of the singular values remains constant,

minL s.t. ∀i si ≥ 0, ∆E = 0, (5)

where ∆E = E(Y)−E(X) is the difference of energies
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of the observation space and the latent space, and the
energy is computed as E(X) =

∑

i s2
i . We use SNOPT

[5], a non-linear constraint optimizer to minimize Eq.
(5).

Finally, we choose the dimensionality of the latent
space to be

Q = argmaxi

si

si+1 + ǫ
(6)

where ǫ ≪ 1, and s1 ≥ s2 · · · ≥ sD.2 Once Q is com-
puted, we apply PCA in the optimized low-dimensional
space. Note that the mapping is still non-linear since
PCA is performed in the latent space, not in the obser-
vation space, and simply rotates the latent coodinates
to produce the most compact Q-dimensional represen-
tation. The last step consists of refining the kernel
hyperparamters by optimizing p(Y|X,Θ) with respect
to Θ where X is kept fix.

The complexity of our approach is of the same or-
der as the complexity of the GPLVM, i.e., O(N3), since
the complexity of computing the singular values of X

is min(O(D3), O(N3)), with D the dimensionality of
the whitened space, and N the number of examples.
However, since optimization is performed in a high-
dimensional space, a higher number of variables has
to be optimized. When using sparsification the com-
plexity is reduced to O(Nm2) or O(m3), with m ≪ N

depending on the technique used.
Fig. 1 compares the GPLVM (initialized via PCA)

with the result of optimizing Eq. (5) on a toy example,
where a 1D manifold is embedded in a 2D space. PCA
provides a non-optimal initialization, and the GPLVM
gets trapped in local minima, whereas our method re-
covers the correct structure. Note that our final PCA
projection rotates the latent space and results in a
1D manifold. In this example, using spectral methods
could lead to a successful initialization for the GPLVM.
However, for more complex datasets this is not neces-
sarily the case in general, as shown in Figs. 3 and 7.

Fig. 2 (left) depicts the evolution of the first ten
singular values when optimizing Eq. (5) with a loga-
rithmic penalty function for the 30D motion database
used below. Note how our method drops dimensions
as the optimization evolves (i.e., the smallest singular
values drop to zero within the first few iterations). The
behavior of different penalty functions is shown in Fig.
2 (right).

As a pre-processing step, we first whiten the high-
dimensional space using PCA and remove all dimen-
sions with negligible singular values. In practice, we
choose the kernel width using neighborhood distances,
and we set the noise variance to 0.0001.

2This strategy is commonly used in statistics to compute the

amount of signal sources in noisy data.
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Figure 2. Spectrum of a 30D motion database
(left) and comparison of different penalty functions
(right) on a 30D motion database. Note that the logarith-
mic penalty imposes sparsity more strongly.

4. Examples and Experimental results

In this section we demonstrate the effectiveness of
our approach to discover the latent structure and its
dimensionality in a variety of artificial datasets. We
then illustrate the application of our method to the
problem of tracking and classifying 3D articulated mo-
tion.

4.1. Example of dimensionality and latent structure
estimation

Graph-based methods rely on local neighborhoods
to unravel the data and discover underlying latent
structure, but often suffer in the presence of sparse
and noisy data. We illustrate this problem on a sparse
swiss role, which is a 2D structure embedded in a 3D
space. We simulate sparsity by providing as training
data only the black points in Fig. 3 (a). The first row
in Fig. 3 (b) shows the result of applying PCA, Isomap,
Laplacian Eigenmaps, LLE, LTSA and MVU (see [26]
for a review on these techniques). The second row de-
picts our technique and the result of optimizing the
GPLVM with these algorithms as initialization. The
last two rows of Fig. 3 (b) show the test data (i.e.,
colored samples) reconstructed in the 2D latent space
and in the original 3D space. Note that our method,
unlike PCA, graph-based techniques and the GPLVM
with any of the initializations, is able to recover the
correct manifold.

We evaluate quantitatively the manifolds estimated
by the different algorithms computing both a global
and a local measure of accuracy. The reconstruction
error is a global measure of the ability to generalize,
and was obtained by first finding the latent coordinates
x∗ of the test data y∗ by maximizing p(x∗|y∗,X,Y),
and then computing the average mean prediction er-
ror 1

Nt

∑

i ‖µ(x∗
i ) − y∗

i ‖2, with Nt the number of test
data. The relationship error, Rerror, measures how
well local neighborhoods are preserved and is defined

as Rerror =
∑Nt

i=1

∑

j∈ηi

(

Γi,j − Γ̄i,j

)2
, where ηi is the
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Figure 3. Finding a 2D manifold in 3D space on a sparsely sampled swiss roll. Only a sparse, noisy subset
(depicted in black) of the full manifold is assumed to be known (a). (b) shows the initialization (with neighborhood size
k=6), GPLVM result and 2D/3D reconstruction of the full manifold (from top to bottom).

set of neighbors of the i-th test data, Γi,j =
‖xi−xj‖2

‖yi−yj‖2

is

the ratio between the distance in the latent space and
the distance in the observation space for two neighbors,
and Γ̄i,j is the mean ratio in the local neighborhood.
Fig. 4 depicts the two error measures when performing
the experiment in Fig. 3 averaged over 20 random par-
titions of the data. We use a local neighborhood of size
4 to compute the relationship error in all experiments,
and a logarithmic sparsity function φ(s) = ln(1 + αs2)
with α = 10, and Θ = {0.5, 1.5, 0.01} for our ap-
proach. We report results over a wide range of param-
eters for the different baselines. The hyperparameters
were optimized for the GPLVM baselines. Note that
our method outperforms the baselines independent of
the initialization used for the GPLVM.

We further illustrate our method on 5 complex syn-

thetic examples. In Fig. 5 (a) a spiral with a wide
separation between rings is reduced to a 1D mani-
fold. When the distance between the different rings
decreases, the manifold dimensionality changes from
1D to 2D (see Fig. 5 (b)), since relationships between
points that have the same phase are considered. In
Fig. 5 (c) a 2D manifold from a cut-off sphere sampled
along longitudinal lines is recovered. The manifold in
Fig. 5 (d) is determined to be 3D, while its truncated
version in Fig. 5 (e) is estimated to be 2D.

4.2. Experiments: Tracking and classifying human
motion

We conducted experiments tracking and classifying
complex motions in synthetic and real data. We cre-
ated semi-synthetic databases using motion capture
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Reconstruction Error Relationship Error

mean stddev mean stddev

our method 0.0041 0.0107 0.0008 0.0013

PCA init 0.0845 0.1860 0.4232 0.1915

ISOMAP init (k=6) 0.3813 0.1794 0.0038 0.0120

ISOMAP init (k=9) 0.1720 0.8453 0.0011 0.0076

ISOMAP init (k=12) 0.3583 0.4221 0.0130 0.0035

ISOMAP init (k=15) 0.2350 0.2326 0.0731 0.0314

Laplacian init (k=6) 3.7027 2.6553 9.2735 2.5540

Laplacian init (k=9) 2.3136 1.3150 0.6426 8.1716

Laplacian init (k=12) 1.6038 0.2878 7.9784 1.5029

Laplacian init (k=15) 0.5561 2.0321 2.2400 0.0508

LLE init (k=6) 3.5514 2.1871 7.5591 1.4807

LLE init (k=9) 2.6175 2.5141 8.5485 1.4881

LLE init (k=12) 1.6235 1.1386 0.1058 0.1064

LLE init (k=15) 2.7300 4.5488 1.7820 8.9215

LTSA init (k=6) 2.6377 0.7273 1.2636 1.6498

LTSA init (k=9) 3.5149 3.8835 2.0575 2.4038

LTSA init (k=12) 2.1734 3.2099 2.3700 3.0718

LTSA init (k=15) 4.0950 3.6681 2.1819 4.5150

MVU init (k=6) 0.3783 0.5381 0.1238 0.0055

MVU init (k=9) 0.3383 0.3665 0.0491 0.0465

MVU init (k=12) 0.3228 0.3477 0.0672 0.0164

MVU init (k=15) 0.0706 0.2560 0.5856 2.8057

Figure 4. Quantitative performance on a synthetic sparse swiss roll example Reconstruction and Relationship
Error for the experiment in Fig. 3 averaged over 20 random partitions of the data. (Left) 8 best dimensionality reduction
techniques. (Right) More detailed results, including PCA and graph-based methods with different neighborhood sizes.

Figure 5. Dimensionality estimation. (Top) Five 2D manifolds embedded in 3D. (Bottom) Latent spaces and dimen-
sionalities Q learned using our continous dimensionality reduction method.

data, where the task is, given 2D joint locations in
monocular images, infer the 3D pose. The databases
were composed of running examples from 3 different
subjects, and walking examples from a single subject,
all 62D. We split the data into training and testing by
randomly sampling 3 running and 2 walking motions
for training and 10 running and 5 walking motions for
testing. Note that most of the splits contain motions
from only 2 or fewer subjects, requiring generalization
to unseen styles. We use the Condensation algorithm
[12] with a second-order Markov model and the repro-
jection error as image likelihood [25, 23]. We compare
our approach to two baselines: tracking in the origi-
nal space, and tracking in a latent space learned using
GPLVM with PCA initialization. Fig. 6 (right) depicts
tracking accuracy in cm as a function of the number of
particles averaged over 10 splits. Note that our ap-
proach (green) outperforms significantly the baselines.
Tracking in the original space (red) results in the worst
performance. For all splits, our approach discovered

a 2D latent space. GPLVM with PCA initialization
performes worse than our approach since it learns non-
smooth latent spaces, as illusted in Fig. 6 (left). Please
note that we do not learn dynamics. The connections
between different latent coordinates are depicted for
illustration purposes only.

In the second experiment we track and classify hu-
man motion from real images in the kitchen domain [8].
The dataset consists of multiple instances of rolling,
milling and brooming motions performed in front of
a multi-camera array and synchronized mocap. Our
method found a 3D latent space from 30D joint angle
observations of 2 trials for each of the 3 different mo-
tions (N = 1120 training examples). Note that in pre-
vious work without the inclusion of hand-tuned prior
knowledge GPLVM-based approaches were not able to
learn latent spaces with multiple motions [24]. Fig.
7 shows the result of learning such motions using our
method. Note that the latent space is smooth (i.e.,
consecutive frames in time are close in latent space),
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Figure 6. Tracking running (top) and walking (bottom) motions from 2D mocap data. (Left) Example of a
2D space learned with GPLVM initialized to PCA. (Middle) Latent space learned with our rank priors. (Right) Tracking
performance in cm for our approach vs. tracking in the original space and GPLVM initialized with PCA, when avaraged
over 10 splits. Note that our method outperforms the baselines for all number of particles.

GPLVM initialized LLE Our approach

Fscore 0.7312 3.9778
Rerror 2.4105 0.0180

Table 1. Fisher score and Reconstruction error.

and separates well the different classes. To quantify
the latter, we computed the Fisher score defined as
Fscore = tr

(

S−1
w Sb

)

, where Sw is the within class ma-
trix and Sb is the between class matrix. Smoothness
implies lower relationship error, as depicted by Table
1. Note that our method performs significantly better
than traditional GPLVM in terms of the relationship
error and the fisher score.

Fig. 8 depicts tracking and classification perfor-
mance for the milling and rolling motions. The 3D
latent space learned by our approach is depicted by
Fig. 7. For tracking we used a particle filter in the
low dimensional space with second-order Markov dy-
namics. Our image likelihood is based on low-level sil-
houette features. We labeled the data using 7 classes
(rest, grasp pin, rolling, grasp broom, brooming, grasp
mill, milling) and used Nearest Neighbors for classi-
fication. Our method significantly outperforms the
GPLVM with LLE initialization in both tracking ac-
curacy and classification performance.

Figure 7. Learning different types of motion into one
single 3D latent space using our rank prior: Red =
rolling, green = brooming, blue = milling.

5. Conclusions and Future Work

In this paper we have presented a new method
for non-linear dimensionality reduction that penalizes
high dimensional spaces and results in an optimiza-
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Figure 8. Tracking and classification performance for milling and rolling motions using our method (red) and GPLVM
initialized to LLE (blue) as a function of the number of particles used in the particle filter.

tion problem that continuously reduces dimensionlity
while solving for the latent coordinates. Our approach
can discover the structure of the latent space and its
intrinsic dimensionality, without an ad-hoc initializa-
tion step. Our approach has proven superior to PCA,
graph-based and non-linear dimensionality reduction
techniques in a variety of tasks involving synthetic and
real-world databases, including tracking and classify-
ing human motion. While our approach avoids most of
the local minima present in the GPLVM, the objective
function remains non-linear; we plan as future work to
investigate simulated annealing and stochastic gradient
descend to further mitigate this problem.
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