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Abstract

We address the problem of parameter estimation in pres-
ence of both uncertainty and outlier noise. This is a com-
mon occurrence in computer vision: feature localization
is performed with an inherent uncertainty which can be
described as Gaussian, with unknown variance; feature
matching in multiple images produces incorrect data points.
RANSAC is the preferred method to reject outliers if the
variance of the uncertainty noise is known, but fails other-
wise, by producing either a tight fit to an incorrect solution,
or by computing a solution which includes outliers. We thus
propose a new estimator which enforces stability of the solu-
tion with respect to the uncertainty bound. We show that the
variance of the estimated parameters (VoP) exhibits ranges
of stability with respect to this bound. Within this range of
stability, we can accurately segment the inliers, and esti-
mate the parameters, the variance of the Gaussian noise.
We show how to compute this stable range using RANSAC
and a search. We validate our results by extensive tests and
comparison with state of the art estimators on both synthetic
and real data sets. These include line fitting, homography
estimation, and fundamental matrix estimation. The pro-
posed method outperforms all others.

1. Introduction
We address the problem of parameter estimation in pres-

ence of both uncertainty and outlier noise. This is a com-

mon occurrence in computer vision: feature detection intro-

duces location uncertainty which can be described as Gaus-

sian, with unknown variance; feature matching in multiple

images produces incorrect data points [9]. RANSAC has

been successfully applied in computer vision applications

including range data segmentation and structure from mo-

tion, in presence of a number of outliers [5, 6]. The objec-

tive function to be maximized in RANSAC is the number of

data points that lie within a distance threshold (i.e. inliers).

This random selection is repeated a number of times and

the hypothesis with the maximum value represents the fit. A

critical assumption in the RANSAC algorithm is that the in-

lier bound, or the variance of the noise is known [5]. Image

features (e.g. interesting points) are measured with inaccu-

racy caused by camera noise, the inaccuracy of feature ex-

traction and matching, and moving objects. Unfortunately,

degradation of performance is inevitable if we use a prede-

fined threshold (noise model). For instance, outliers might

be taken as inliers when a large bound is employed. As a

result, the estimation result, even computed with a single

outlier, can be biased significantly. Conversely, if a small

bound is applied, the number of inliers may not be large

enough to correctly estimate parameters [1].

Here, we propose a new estimator which enforces stabil-

ity of the solution with respect to the uncertainty bound.

We show that the variance of the estimated parameters

(VoP) exhibits ranges of stability with respect to this bound.

Within this range of stability, we can accurately, segment

the inliers, and estimate the parameters, the variance of the

Gaussian noise.

We show how to compute this stable range using

RANSAC and a search in the bound space. The minimum

variance of estimated parameters (VoP) is related to the op-

timal threshold of RANSAC. The performance of RANSAC

depends on the threshold. For a correct threshold which

captures the inlier structure, since the mode of Gaussian

acts like an attractor in which estimation will converge to

the maximum value of the Gaussian, the estimated results

produced by random trials can be close to the ground truth

and the VoP will be small. For a low threshold, the sample

taken by RANSAC is too small to represent the inlier data,

resulting a biased output. For a high threshold, outliers are

included and the estimate may deviate far from the desired

parameters. Both small and high threshold give a higher

VoP than the correct threshold case. Based on this, we can

define the stability of an estimator, which describes the VoP

with respect to the changes of threshold.

The proposed algorithm can be summarized as follows:

First, an initial range is defined between 0 and the value

computed by a least-square fit to all available data. Sec-

ond, we estimate a proper threshold which has the mini-
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mum VoP in the search region. This provides the estimate

of parameters. We then choose the highest bound consistent

with these parameters, which in turn allow us to estimate the

variance of the Gaussian noise.

The reminder of the paper is organized as follows. Sec-

tion 2 shows the related work. In Section 3, we present the

StaRSaC algorithm. Section 4 provides the analysis of the

method. This is followed by Section 5 where the proposed

idea is validated experimentally.

2. Related Work
Robust estimation methods can be classified into four

categories: random sampling algorithms, scale estimation,

case deletion diagnostics, and voting methods

RANSAC (1981) [5] is a minimal subset random sam-

pling search techniques. The objective function to be maxi-

mized is the number of data points that lie within a distance

threshold. This random selection is repeated a number of

times and the hypothesis with the maximum value repre-

sents the fit. LMedS (Least-Median-Squares, 1996) [17]

calculates for each solution the median distance between

the points and model. MLESAC (Maximum LikElihood

SAmple Consensus, 2000) [14] chooses the solution that

maximizes the likelihood rather than the number of inliers.

MAPSAC (Maximum A Posteriori SAmple Consensus,

2002) [12] use Bayesian probabilities to improves MLE-

SAC being more robust against outliers. M-Estimators [6]

reduces the effect of outliers weighting the residual of indi-

vidual point.

MINPRAN (1995) [3], MUSE (1996) [10], ASSC

(2004) [15] explicitly estimate of the unknown scale of the

inliers noise to extract the inliers from the data. MINPRAN

assumes the outliers are randomly distributed within a cer-

tain range. MUSE evaluates a hypothesized fit over poten-

tial inlier sets via in objective function of unbiased scale

estimates. MUSE is limited to handle extreme outliers.

In ASSC, mean shift finds a local peak close to zero on

the residual density curve, then mean shift valley algorithm

finds the valley (local minimum) next to that peak [15]. It

is usually assumed that a large number of data samples are

available to estimate the scale. As a result, a scale estimator

might fail to get an unbiased result in cases where only a

moderate number of data samples are available [8].

Case deletion method has been proposed to remove out-

liers, which identifies outliers based on some measures such

as Cook’s distance (1977) in statistics [13] . The influence

of each observation can be evaluated by the measuere. The

results may depend on the initial estimation since the meth-

ods delete outliers incrementally.

In the Hough transform [2], the parameter space is di-

vided into cells, and the parameters are selected based on

the values of the cells which have accumulated numbers by

each datum. One of important problem is the dimensional-

ity with respect to the problem space. Tensor voting [11]

can handle a very large percentage of outliers, but does not

take Gaussian noise into account.

3. Stable Random Sample Consensus
3.1. Problem formulation

Figure 1. Problem formulation

Our method produces a good estimate θ∗ of the param-

eter vector θ, and the RANSAC threshold, from which can

be derived the inlier set, and an estimate σ∗ of the Gaussian

noise standard deviation σ as illustrated in Fig 1.

3.2. The algorithm

Our key observation is that, as we change the RANSAC

threshold, the variance of the estimated parameter θ̂, (VoP)

falls into 3 categories.

If the threshold is too small: RANSAC produces a tight

fit to an unstable solution. This instability increases with

both the variance of the uncertainty and with the number of

outliers.

If the threshold is too large: Here again, the fit produces

a set of possible solutions, and is affected by outliers.

Finally, we experimentally observe that there exists a

wide range for which the fit is stable.

Once we have found a stable estimate θ∗of the parame-

ters, we can choose the largest RANSAC threshold consis-

tent with θ∗, which in turn provide us with the set of inliers.

Finally, if needed, we can provide a good estimate of the

variance of the Gaussian noise from the set of inliers. This

is presented in Algorithm 1.

3.3. Illustration: 2-D line fit

We show a simple 2-D line estimation problem. First, we

study the behavior of RANSAC with respect to the thresh-

old. We define a 2-D line model and 160 inlier points with

Gaussian noise N (0, 2). We add 40 outlier points into the

data set randomly distributed. The total number of points is

200. Fig. 2 shows the behavior of RANSAC which provides

a good result if the threshold is the same as the pre-defined

standard deviation (b = σ = 2). Both a large threshold

(b = 200) and a small threshold (b = 0.0002) yield signifi-

cant biased results in this example.
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Algorithm 1 StaRSaC: Stable Random Sample Consensus

Input: measurement X, a model M
Output: estimate θ∗, inliers X∗

in, bound b∗

Initialization of the range: [bL, bU ]

Lower bound: bL = ε
Upper bound (bU ) using least-square method

Define the search range {bi} ∈ [bL, bU ]
For b′ = [b1, b2, · · · , bn]

Set S = ø
For j=1 to K

Compute parameter θ̂j = f(b′,X) using RANSAC

S = S
⋃

θ̂j

End
var(θ̂|bi) = E{(θ̄ − θ̂j)2}, θj ∈ S

End
bm, θ∗ using arg mini var(θ̂|bi)
Choose b∗ in {b|b > bm} consistent with θ∗

X∗
in = f(b∗,X)

Compute σ∗ using X∗
in

Fig. 3 (a) shows the VoP and VoI with respect to the

threshold. While the VoI decreases asymptotically when

the threshold decreases, the VoP is bounded and stays in

a stable range. Fig. 3 (b) shows the number of inliers with

respect to the threshold. In the stable range, more inliers

might provide better results since the estimation accuracy is

related to the number of inliers. Fig. 3 (c) shows that the

estimation results in the stable region produce the correct

parameters. The error is computed as the inner product be-

tween the parameters of the ground truth 2-D line and the

estimated parameters.

4. Analysis of the method
4.1. RANSAC and the threshold

In RANSAC estimation, the cost function is defined as

C =
∑

i

ρ(e2
i ), (1)

where

ρ(e2) = { 0 e2 < b2

constant e2 ≥ b2.
(2)

If we know the standard deviation σ of the Gaussian distri-

bution, the optimal threshold b∗ can be computed by using

the inverse cumulative chi-squared (χ2
n) distribution [6]. In

real applications, however, the prediction of noise may not

be possible.

4.2. VoP and the RANSAC threshold

We show that the minimum variance of parameters (VoP)

is related to the optimal threshold of RANSAC. The perfor-

mance of RANSAC depends on this threshold. To study
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Figure 2. 2-D line estimation results with different thresholds (200,

20, 2, 0.0002. Threshold 0.2 provides a result similar to 20.
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Figure 3. Results of 2-D line estimation. (a) Variance of estimator

and variance of inliers. (b) Number of inliers with respect to the

bound changes. (c) Error in 2-D line estimation.

the behavior of RANSAC threshold, we divide the bound

space into three different regions: near optimal (b ∼ b∗),

low threshold (b � b∗), and high threshold (b � b∗) ar-

eas. Near the optimal value, the mode of Gaussian acts like

an attractor in which estimation converges to the maximum

value of the Gaussian. In the lower threshold area, the sam-

ple taken by small threshold in RANSAC is too small to

represent the inlier data, and may produce biased results.

In the high threshold area, outliers acts as inliers, the es-

timated results represent the whole data including outliers,

which means the estimation deviates from the parameters.

4.2.1 Variance of an estimator

Parameter estimation finds the values of the parameters that

lead to the best agreement between the predictions of the

model (e.g. epipolar geometry) and the data (e.g. the set of

corresponding points in images). Here, we do not consider

the model selection problem, and use a single model (e.g.

line fit, fundamental matrix F, or homography H).

Given a model that has a set of adjustable parameters in

the vector θ = (θ1, θ2, · · · , θp)T and measured points X,

the goal is to find θ∗. In the RANSAC algorithm, each

component of the parameter vector can be defined as a

function of the measurements X = [x1,x2, · · · ,xN ], pre-

determined model M , and the threshold b as

θ̂ = f(X, M, b). (3)

The error of estimated parameter is |θ† − θ̂| where θ† is the

unknown ground truth. We can define the VoP as

var(θ̂) = E{(θ̂ − θ̄)(θ̂ − θ̄)T } (4)

where var() is the covariance matrix of dimenstion (p×p).
Given K estimated parameters, Θ = [θ1, θ2, . . . , θK ], we

compute the covariance matrix Σ = ΘΘT ∈ R(P×P ) and

decompose it into Σ = LDVT using singular value decom-

position. The variance of parameters (VoP) is computed as

var(θ̂) .= trace(D). Note that the first eigenvalue is domi-

nant, and gives similar results in our example.

4.2.2 Case I: near optimal threshold

Suppose that we have an optimal threshold b∗ and the error

of our estimation is minimum with this threshold as

E{θ̂ − θ†|b∗} ≤ E{θ̂ − θ†|b}, b �= b∗. (5)

First, if there is no outlier, the best estimate should represent

the mode of the Gaussian. Since the Gaussian distribution is

continuous, b = b∗ + δ(δ → 0) should give the same result.

Second, outliers which are far from the mode do not affect

the result of estimation due to the threshold. Hence, in a

certain range near the optimal threshold, we have a stable

estimate θ̂, and var(θ̂) is small.

4.2.3 Case II: high threshold

Suppose that we know the optimal threshold and compute

the parameters by RANSAC with the threshold. The VoP

var(θ̂|b∗) should be greater than zero even if we have only

inliers with the optimal threshold.

The Cramér-Rao inequality shows that there is a limit

on how much information about unknown parameters can

be extracted from a set of measurements [16]. The score is

defined by V = ∂
∂θ ln pθ(x). The variance of the score is
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the Fisher information: J(θ) =< [∂θ log pθ(x)]2 > . The

Cramér-Rao bound (CRB) states that the mean square error

of an unbiased estimator f of θ is lower bounded by the

inverse of the Fisher information as

σ2(θ) ≥ 1
J(θ)

. (6)

The Fisher information is related to the entropy of the dis-

tribution.

Now, consider the high threshold area. Given a set of

points, {xi}, it is clear that the threshold should be between

0 and the value bmax = max ||xi−xj ||. The high threshold

range is defined by a set of threshold bi ∈ [b∗, bmax].
First, the CRB explains why the VoP increases as the

variance of inliers (VoI) increases.

Second, the VoP increases if we add outliers into the data

set. It can be explained by the Fisher information inequal-

ity [4] which states the Fisher information of a mixture is

equal to or greater than the individual Fisher information as

1
J(X + Y )

≥ 1
J(X)

+
1

J(Y )
. (7)

If we add outliers and assume that the Fisher informa-

tion is non-zero, 1
J(Y ) > 0, we can get the relationship

σ2(θX+Y ) > σ2(θX). If the bound b∗ corresponding to

the 1
J(X) is an optimal bound, a larger bound b∗ + δ(δ >

0) gives 1
J(X+Y ) because the Y has uniform distribution.

Therefore, we can get the relationship:

var(θ̂|Xinliers) < var(θ̂|Xoutliers). (8)

So, for case II, var(θ̂) > var(θ∗).

4.2.4 Case III: low threshold

Case I shows the relation between VoE and the Fisher in-

formation when uniform noise is added to the inliers with

the Gaussian distribution. Case III shows a different case in

which the sample in the Gaussian distribution are restricted

by new threshold b∗ − δ(δ > 0).
We start with inlier data Xinliers ∼ N (0, σ2) and con-

sider a subset of the data, S ⊂ Xinliers. We link two con-

ditions: var(θ̂|Xinliers) and var(θ̂|S).
We can consider two cases. In the first case, RANSAC

consistently converges close to the correct solution θ̂. The

variance of the solution is then given by the CRB. For a

Gaussian distribution, this bound is 2(σ2)2/n, where n is

the number of samples. Here, the number of samples is

smaller than the full number of inliers, therefore the vari-

ance is higher,

var(θ̂|Xinliers) < var(θ̂|S). (9)
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Figure 4. The relationship between VoI and VoP in 2-D line esti-

mation.

In the second case, RANSAC may converge to different

solutions on different trials, each with a small variance (be-

cause of the tight bound). Then, the variance of the solution

is large. So, for case III, we have var(θ̂) > var(θ∗).
In summary, var(θ̂) is small and stable in case I, and

larger in both case II and case III.

4.3. The relation between the RANSAC threshold b
and the variance of the Gaussian noise σ2

The direct way to solve the problem would be to estimate

σ at the same time as we estimate θ. Unfortunately, there

is no simple way to perform this evaluation. Instead, we

evaluate the RANSAC threshold b and the parameter θ.

It is therefore important to establish the relationship be-

tween b and σ. In one direction, if we know σ, we can

estimate b using the inverse cumulative chi-squared (χ2
n)

distribution [6]. The reverse is not simple. We can verify

experimentally that they are correlated as shown in Fig 4.

Knowing θ∗ defines a range for b = {bi, . . . , bi+k} in

which the parameter θ is stable. We choose the correspond-

ing b∗ as the largest such value producing θ. This is in ac-

cordance to the CRB, which states that the minimum vari-

ance solution is the one with more samples. Referring to

Fig 3, the range for b is [0.02, 3], and we choose b∗ = 3.0,

which valid gives us 152 inliers (out of 160).

4.4. Influence of the number of RANSAC trials

To compute the VoP, RANSAC is repeated K times. We

use a constant number K = 30 in all examples. We ex-

perimented with different set of values from K = 10 to

K = 100 and obtained similar results.
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Figure 5. Stability analysis of 2-D line estimation.

4.5. Range of applicability

We investigate the range of applicability of our method

using the error with respect to the ratio of outliers and the

VoI. The total number of inliers points is 200. The ratio of

outliers to inliers varies from 0 to 1. The inliers are subject

to Gaussian noise with a variance σ2 from 0 to 20. The error

is defined as E{d(M,xi)} where d(M,xi) is the distance

between the inlier point xi to the ground truth line M in

pixels units. Fig. 5 shows the stability of StaRSaC. The

result shows that there is a large flat area in which StaRSaC

can provide reasonable estimation results.

5. Experimental results

We validate our algorithm on motion estimation prob-

lems with synthetic data and real images.

5.1. Algorithm implementation

First, an initial range is defined between 0 and the value

computed by a least-square method. Technically, we de-

fine a small number ε for the lower threshold (ε = 10−7).

Second, to select the set of bounds, we use a uniform distri-

bution in a log-scale. For instance, the range (0.01, 0.1] has

the same number of samples as (0.001, 0.01] and (0.1, 1.0].
Third, to compute the variance of an estimator, RANSAC

is repeated K times. We use a constant number K = 30 in

our experiments. Fourth, to compute the VoP, we can use

either the largest eigenvalue of the covariance matrix Θ,

or the expected value of the Frobenius norm as var(θ̂) .=
E{||Ĥi − Ĥj ||2F }, i �= j where both Ĥi and Ĥj are nor-

malized by setting H(3,3) = 1.

5.2. Evaluation method

Many papers show an error index as E{d(θ̂, X̂inliers)}
the distance between estimated parameters and inliers se-

lected by the estimation. However, a result which has a
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Figure 6. Variance of the estimator and bound.

small error may have significant bias [1]. We consistently

evaluate our results with respect to the ground truth.

To generate synthetic points, we define a camera matrix

K =

⎡
⎣

2000 0 0
0 2000 0
0 0 1

⎤
⎦ .

For images, corresponding points are extracted by SIFT [9]

and their coordinates are normalized by the method pro-

posed by Hartley [6].

5.3. Homography estimation with synthetic data

We define a homography matrix as H = K(R −
t̂n̂T /d)K−1 [6]. The normal vector of the plane is n =
[0.2, 0.9, 0.3]T , the distance from camera to the plane is

d = f×106, and the translation is t = [200, 200, f×104]T .

The rotation (rx, ry, rz) is defined within the range from 0◦

to 60◦. These parameters are derived from an application

where an airborne camera is observing the ground plane.

The total number of points is 300. The ratio of outliers to

inliers varies from 0 to 0.5. The inliers are subject to Gaus-

sian noise with σ = {1, 3, 5, 7, 9}.

The error is defined as E{||θ†i − θ̂i||2} where θ†i is the

known parameter (ground truth), θ̂i is the estimated param-

eter. We use only three rotation angles (rx, ry, rz) for the

error because rotation angles can be estimated more accu-

rately than either the translation or the normal of the plane

in our experiments. Since the decomposition does not give

resonable parameters if the ratio of outliers is increased, we

use the Frobenius norm as an alternative error criterion as

E{||H† − Ĥi||2F } where H† is the ground truth homogra-

phy matrix.

Fig 6 shows the variance of estimated parameters with

respect to the bound. We now show results for one ex-

periment, with σ = 3, 10% outliers uniformly distributed.

The result shows that there is a large flat area in which

StaRSaC can provide resonable estimation results. Fig 7
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shows the error in angle and Frobenius norm, and the es-

timated bounds. The results show that a reasonable bound

can be estimated by StaRSaC.

5.4. Homography estimation with real images

We use the ‘2005 datasets’ [7] which can be obtained

from http://vision.middlebury.edu/stereo/data/. We select

one image from each dataset (Art, Books, Dolls, Laundry,

Moebius, Reindeer, Computer, Drumsticks, Dwarves) and

generate a new image by the homography matrix H (n =
[0.2, 0.9, 0.3]T , d = f×106, t = [200, 200, f×104]T ,R =
I(3×3)). The error is computed over the inlier set of points

{(pi,qi)} as E{||qi − Hpi||2}.
Fig 8 shows that StaRSaC provides very accurate esti-

mation results on this data set.

5.5. Fundamental matrix with synthetic data

We compare StaRSaC with M-estimation [6],

LMedS [17], RANSAC [5], MLESAC [14], MAP-
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Figure 9. Examples of epipolar geometry estimation: left and right

results are computed by Mest-Torr and StaRSaC, respectively, us-

ing the Aloe image (top) and the Monopoly image (bottom) in the

2006 dataset.

SAC [12] algorithms which can be obtained from [1].

We generate 3D points (N = 50) randomly within a

box (2000 × 2000 × 50). Two cameras are defined as

P1 = K[I(3×3), [0, 0, 0]T ] and P2 = K[R, t]. R is defined

with angles (−3◦,−30◦, 3◦) and t is [6000, 0,−2000].
Points are generated by projection matrices P1, P2 and F
is computed from the P1 and P2. The error is computed

over the inlier set of points {(pi,qi)} as E{d(F†pi,qi)}
which represents the distance between an inlier and the

corresponding epipolar line (the ground truth). Table 1

shows that the StaRSaC solution is consistently better than

the others in all cases.

5.6. Fundamental matrix with real images

We again use the ‘2006 datasets’ [7] which can be ob-

tained from http://vision.middlebury.edu/stereo/data/. The

error is computed over the inlier set of points {(pi,qi)}
as E{d(F†pi,qi)} which represents the distance between

an inlier and the corresponding epipolar line (the ground

truth). Fig 9 shows two examples of estimated epipolar ge-

ometries. Table 2 shows the results of fundamental matrix

estimation with these real images. The StaRSaC solution is

significantly better than all other methods.

5.7. Computational complexity

Although StaRSaC calls standard RANSAC algorithm

several times to compute the VoP, StaRSaC can be immedi-

ately parallelized. Moreover, the search space of StaRSaC

is one dimensional and independent of problems.

6. Conclusion
We propose a fully automatic algorithm for parameter es-

timation in computer vision applications. We show that the
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Method σ = 0.5 σ = 0.5 σ = 1.0 σ = 1.0 σ = 2.0 σ = 2.0
OL 30% OL 50% OL 30% OL 50% OL 30% OL 50%

Mest-ls 0.680 1.414 1.161 1.465 0.989 1.265

Mest-eig 0.329 0.319 0.198 0.484 0.142 0.681

Mest-Torr 0.026 0.319 0.091 0.133 0.118 0.470

LMedS-ls 0.030 0.364 0.062 1.171 0.163 0.530

LMedS-eig 0.024 0.398 0.101 0.241 0.459 1.024

RANSAC 0.997 1.418 1.161 1.316 0.996 1.786

MLESAC 0.087 0.414 0.358 0.110 0.095 0.504

MAPSAC 0.065 0.673 0.090 0.305 0.343 0.460

StaRSaC 0.004 0.154 0.012 0.027 0.051 0.381

Table 1. Fundamental matrix estimation result (synthetic data, unit: pixel).

Method mean(e) mean(σ2) med(e) med(σ2)

Mest-ls 18.544 37.455 13.962 41.933

Mest-eig 14.079 25.597 4.576 25.612

Mest-Torr 11.820 22.912 1.926 8.381

LMedS-ls 9.609 14.098 1.615 4.381

LMedS-eig 9.564 13.554 1.256 4.533

RANSAC 21.658 41.448 16.814 47.172

MLESAC 12.032 12.102 1.112 3.650

MAPSAC 10.197 16.737 1.374 4.187

StaRSaC 8.046 11.671 0.511 0.864

Table 2. Fundamental matrix estimation result (21 datasets, unit:

pixel).

variance of the estimated parameters (VoP) exhibits ranges

of stability with respect to this bound. Within this range

of stability, we can estimate both the parameters, and the

variance of the Gaussian noise. We show how to compute

this stable range using RANSAC. We validate our results

by extensive tests and comparison with state of the art esti-

mators on both synthetic and real data sets. These include

line fitting, homography estimation, and fundamental ma-

trix estimation. These results are very encouraging. We are

working on formally establishing some of the proofs.
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