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Abstract

This paper discusses the question: Can we improve the

recognition of objects by using their spatial context? We

start from Bag-of-Words models and use the Pascal 2007

dataset. We use the rough object bounding boxes that come

with this dataset to investigate the fundamental gain con-

text can bring. Our main contributions are: (I) The result

of Zhang et al. in CVPR07 that context is superfluous de-

rived from the Pascal 2005 data set of 4 classes does not

generalize to this dataset. For our larger and more realistic

dataset context is important indeed. (II) Using the rough

bounding box to limit or extend the scope of an object dur-

ing both training and testing, we find that the spatial extent

of an object is determined by its category: (a) well-defined,

rigid objects have the object itself as the preferred spatial

extent. (b) Non-rigid objects have an unbounded spatial ex-

tent: all spatial extents produce equally good results. (c)

Objects primarily categorised based on their function have

the whole image as their spatial extent. Finally, (III) using

the rough bounding box to treat object and context sepa-

rately, we find that the upper bound of improvement is 26%
(12% absolute) in terms of Mean Average Precision, and

this bound is likely to be higher if the localisation is done

using segmentation. It is concluded that object localisation,

if done sufficiently precise, helps considerably in the recog-

nition of objects for the Pascal 2007 dataset.

1. Introduction

The popular Bag of Words framework produced the best

results in two image/video retrieval tasks of 2008: The Pas-

cal VOC challenge [4] and the TrecVid Video Retrieval task

[18]. Its success sparks research on various aspects of the

Bag of Words framework. These aspects include point de-

tectors [12], point or patch descriptors [12, 22], visual vo-

cabulary [14, 13, 22], learning methods [22], and inducing

spatial information [9]. In this paper we will focus on an-

other aspect within this framework, namely the spatial con-

text of an object.

The role of context within the Bag of Words framework

was addressed earlier by Zhang et al. [22] as part of their

comprehensive comparison of features and kernels. Their

experiments on context were performed on the four-class

problem of the Pascal VOC 2005 object verification chal-

lenge. They report that ”while the backgrounds [context]

in most available datasets have non-negligible correlations

with the foreground objects, using both foreground [object]

and background [context] features for learning and recogni-

tion does not result in better performance for our method.”

This result was surprising given the importance of context

in both psychological work ([1, 2]) and work in computer

vision ([5, 16, 17, 19]). Indeed, in the first part of our pa-

per we repeat and extend the experiments from [22] on the

larger and more realistic Pascal 2007 dataset and we arrive

at a different overall conclusion.

Therefore this paper revisits the role of context in a Bag

of Words approach, addressing the following questions: (I)

Is context really superfluous? (II) What is the spatial extent

of an object? I.e. what is the ideal window to look at an

object in a Bag of Word fashion? (III) What is the potential

performance gain by dividing context from object patches

through rough localisation?

2. Related Work

Within the Bag of Words framework Nowak et al. [15]

and Jurie and Triggs [7] showed that sampling many differ-

ent patches using either a random strategy [15] or a regular

dense grid [7] works better than using interest points (as

used for example in [22]). We will adopt the Dense Sam-

pling method of [7].

Mikolajczyk and Schmid [12] and Zhang et al. [22]

found that SIFT or SIFT-like variants are the best perform-

ing patch descriptors within the Bag of Words framework,
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so we will use a SIFT-variant.

Large codebooks obtained by unsupervised clustering

such as k-means give good performance (e.g. [22]). More

recent interesting research is focusing on creating very large

codebooks using tree-based methods to keep computational

demands within bounds [14, 13]. However, as its value for

large datasets with a large number of classes has yet to be

established, we stick to k-means in this paper.

Support Vector Machines (SVMs) are the most popular

classifier in object verification due to its robustness against

large feature vectors and sparse data. The choice of SVM

kernel has a large influence on performance. Both Zhang et

al. [22] and Jiang et al. [6] concluded that χ2 is the preferred

kernel. We follow their conclusion.

The original Bag of Words framework is orderless.

Therefore Lazebnik et al. [9] introduced a weak spatial or-

der through their spatial pyramid, in which an image is in-

creasingly divided and codebook frequency histograms are

obtained from each region separately. A substantial increase

in performance was obtained. However, the spatial pyra-

mid is incompatible with other divisions of the image: all

possible regions need to exist to calculate proper codebook

frequency histograms for an image. This is not guaran-

teed when using multiple divisions, hence we have refrained

from using the spatial pyramid here.

In Tuytelaars and Schmid [20] it was found that the most

characteristic SIFT-patch for sky measures the horizon. Our

research examines in general the contribution of non-object

patches for object recognition.

Chum and Zissermann [3] and Lampert et al. [8] use Bag

of Words methods for object localisation. In their research

they focus on the object. Our research investigates the in-

clusion of context as an extra information channel. Our re-

search suggests which object classes in such methods are

likely to be found and which are not.

3. Experimental Setup

Our paper addresses the role of contextual and object

patches in a Bag of Words framework. We do this using a

theoretical setting: the Pascal 2007 dataset provides ground

truth annotation in the form of bounding boxes around the

object which we will use in both the train- and test-phase.

Either we use all patches from the image without any dif-

ferentiation or we employ the bounding boxes to distinguish

between two types of patches: object and context

patches. Patches without any overlap with the bound-

ing boxes are context-patches. These measure context

only. Patches that have overlap with the bounding box are

object patches. Thus object patches include pure ob-

ject patches and object-context transition patches, but also

include patches measuring only context; these are typically

patches at the corners of the bounding box.

We perform the following experiments:

I What is the information content of context?

We repeat and extend parts of the experiments of

Zhang et al. [22]. We do four runs: (1) A baseline ex-

periment using all patches for both training and test-

ing. (2) We train on all patches and test on object

patches. (3) We train and test on context patches.

(4) We train and test on object patches.

II Can context be used as an extra information channel?

We train and test while using object and context

patches as separate information channels.

III What is the spatial extent of an object?

We shrink and enlarge the bounding boxes to deter-

mine the best size for recognising objects in a Bag of

Words framework.

IV What is the Influence of Object Localisation Accuracy?

We add a random localisation error to the bounding

boxes during the test phase to determine its influence

on recognition performance.

3.1. Dataset

All experiments are done on the Pascal VOC 2007

challenge. This dataset consists of 9963 images from

www.flickr.com. It contains twenty different object

classes (see figure 1a) and some images contain multiple

classes. The dataset is split into two predefined train and

test sets of size 5011 and 4952 images respectively.

It should be noted that for all classes except horse the

photographs have a reasonable variability. The horse class

is severely biased as it is dominated by two types: images of

one specific horse jumping contest, and images of the same

photographer taken in the same area and whose name is on

the image in white letters. In effect, the horse class shows

all signs of an object against a fixed background.

Given a target object, the goal is to generate a ranked

list. Performance is measured by evaluating this ranked list

using the Average Precision measure, defined as

1

m

n
∑

i=1

fc(xi)

i
, (1)

where: n is the number of images. m is the number of

images of class c. xi is the i-th image in the ranked list

X = {x1, · · · , xn}. Finally, fc is a function which returns

the number of images of class c in the first i images if xi

is of class c and 0 otherwise. This measure has range (0, 1]
where a higher number means better performance.

3.2. Bag of Words Implementation Details

In our Bag of Words experiments we use a variant of

SIFT [10]. Normally, SIFT divides a patch into 4 by 4 sub-

patches where for each sub-patch a Histogram of Oriented
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Gradients is calculated. As we noted that a 2 by 2 SIFT

performs marginally better but never worse than the 4 by

4 SIFT when employing the same set of pixel values, we

prefer to use the 2 by 2 SIFT as it is computationally much

more efficient. The results will generalize to the common 4

by 4 SIFT (data not shown).

Our version of the Dense Sampling strategy [7] sam-

ples patches of 8 by 8 pixels at every 4-th pixel. This

generates about 8000 patches or SIFT-features per image.

Sampling at multiple scales generally gives slightly better

results, but preliminary results reveals only small perfor-

mance increases for all classes. They have no influence

on the observations in this paper. The advantage of small

patches is that there are less ambiguous patches in terms

of object or context patches. Using a single scale is

computationally more efficient.

We obtain a visual vocabulary of 4096 visual words us-

ing k-means clustering. The support vector machine (SVM)

with a χ2 kernel [22] is used for learning. Parameter tun-

ing for the SVM is done on the training set using cross-

validation.

The above results in a state-of-the-art Bag of Words

pipeline [11, 21].

3.3. Evaluation Matrix

We developed a novel way of visualising the data. In-

stead of using only the Average Precision value per class,

we propose to use a confusion matrix based on this mea-

sure, which we call Confusion Average Precision Matrix or

CAMP. The CAMP includes the Average Precision in its

diagonal elements, and provides useful extra information as

can be seen by looking at figure 1a. Hence the CAMP al-

lows for a more detailed analysis.

We calculate the CAMP as follows. Whenever a non-

target class is encountered at position i, we calculate the

difference between the Average Precision score assuming a

perfect ranking from position i and a perfect ranking from

position i + 1 where i is a non-target class sample. This

difference measures the loss L incurred by having a non-

target class at position i. If we define f̂c as a function which

returns the number of images of class c in the first i images,

and let r = m − f̂c(xi), we can calculate the loss L for the

Average Precision measure as

L(xi) =
1

m





r
∑

j=1

f̂c(xi) + j

i + j − 1
−

r
∑

j=1

f̂c(xi) + j

i + j



 . (2)

The confusion with a non-target class is simply the sum of

losses of all images containing this non-target class. When

an image contains different object classes, the loss is di-

vided over these classes. All confusion scores plus the Av-

erage Precision for a single class add to one.

4. Results

4.1. The Information Content of Context

We repeat the experiments of Zhang et al. [22] on the

Pascal 2007 dataset and extend them by employing Confu-

sion Average Precision Matrices (CAMPs).

4.1.1 Baseline: Use All Patches

For our baseline experiment we use all patches in the Bag

of Words system as described above. The Mean Average

Precision over all classes is 0.46, which is comparable with

the results by van de Sande et al. [21] and Marszalek et al.

[11] when using intensity based SIFT with a single-scale

Dense Sampling strategy.

The Confusion Average Precision Matrix (CAMP) is

given in figure 1a. The rows in the CAMP represent the tar-

get class, the columns represent the classes that were found.

The classes used in [22] are marked with an asterisk (*).

The bias towards classes with a high number of samples

inherent to the Average Precision measure causes the per-

son column to be relatively high. Even so, persons are con-

fused as bottles much more than random. Our subsequent

experiments suggest why.

According to the behaviour of the classes, we can

roughly divide them into five clusters where most of the

confusion concentrates: furniture, animals, land-vehicles,

boat+plane, and person. The CAMP when using clusters is

presented in figure 1b. This matrix only contains confusion,

i.e. the off-diagonal elements of figure 1a. The identifica-

tion of these clusters facilitates subsequent discussion.

4.1.2 Learn All, Test Object Patches

In this experiment we learn by using all patches and test

on the object patches. The resulting confusion matrix

looks similar to figure 1a. Therefore we provide the differ-

ence between the confusion matrix of this experiment and

the baseline experiment in figure 2a. We will use such dif-

ference matrices for the subsequent experiments in this sec-

tion.

We make the following observations. In accordance with

Zhang et al. [22], bicycle, car, motorbike, and person either

increase in performance or are unaffected. However, for

most other classes there is a significant decrease in perfor-

mance. In fact, the Mean Average Precision over all classes

goes down by 0.05, showing that context is learned in this

dataset.

For the furniture cluster the context helps with distin-

guishing them from land-vehicles and persons, as can be

seen by the increase in confusion with these clusters (in

light-yellow). However, the shared furniture context also

causes confusion, as can be seen from the decline in in con-

fusion between furniture classes (in dark-blue).

772



b
o
tt
le

c
h
a
ir

d
in

in
g
ta

b
le

p
o
tt
e
d
p
la

n
t

s
o
fa

tv
m

o
n
it
o
r

b
ir
d

c
a
t

c
o
w

d
o
g

h
o
rs

e

s
h
e
e
p

*b
ic

y
c
le

b
u
s

*c
a
r

*m
o
to

rb
ik

e

tr
a
in

a
e
ro

p
la

n
e

b
o
a
t

*p
e
rs

o
n

 

 

0.19 0.05 0.05 0.02 0.03 0.06 0.01 0.03 0.00 0.03 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.48

0.03 0.45 0.01 0.05 0.08 0.09 0.01 0.02 0.00 0.02 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.00 0.19

0.05 0.13 0.28 0.05 0.05 0.08 0.01 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.00 0.28

0.04 0.19 0.08 0.16 0.05 0.10 0.02 0.02 0.01 0.02 0.00 0.00 0.03 0.01 0.02 0.01 0.02 0.00 0.00 0.20

0.02 0.19 0.03 0.04 0.37 0.10 0.00 0.04 0.00 0.03 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.13

0.05 0.14 0.05 0.05 0.09 0.41 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.01 0.03 0.00 0.01 0.01 0.00 0.13

0.02 0.01 0.00 0.03 0.00 0.01 0.38 0.07 0.01 0.11 0.04 0.02 0.02 0.00 0.02 0.02 0.01 0.05 0.03 0.14

0.01 0.02 0.01 0.01 0.01 0.01 0.06 0.44 0.01 0.26 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.10

0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.03 0.27 0.13 0.10 0.16 0.02 0.00 0.02 0.02 0.04 0.00 0.00 0.14

0.01 0.01 0.00 0.01 0.01 0.00 0.06 0.25 0.05 0.37 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.11

0.01 0.01 0.00 0.01 0.00 0.00 0.02 0.01 0.03 0.04 0.69 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.09

0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.03 0.19 0.16 0.04 0.28 0.01 0.00 0.02 0.00 0.04 0.01 0.01 0.12

0.01 0.02 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.03 0.01 0.00 0.46 0.01 0.07 0.05 0.05 0.01 0.02 0.15

0.00 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.50 0.21 0.02 0.08 0.01 0.01 0.09

0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.05 0.69 0.02 0.04 0.04 0.01 0.06

0.01 0.01 0.01 0.02 0.00 0.00 0.03 0.01 0.01 0.02 0.02 0.00 0.06 0.01 0.12 0.49 0.01 0.01 0.01 0.15

0.00 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.07 0.08 0.01 0.69 0.01 0.02 0.05

0.00 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.08 0.01 0.01 0.70 0.03 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.03 0.01 0.01 0.01 0.01 0.02 0.04 0.01 0.04 0.08 0.62 0.06

0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.00 0.01 0.01 0.03 0.01 0.01 0.00 0.00 0.79

bottle

chair

diningtable

pottedplant

sofa

tvmonitor

bird

cat

cow

dog

horse

sheep

*bicycle

bus

*car

*motorbike

train

aeroplane

boat

*person 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Class CAMP Baseline

fu
rn

it
u

re

a
n

im
a

ls

la
n

d
−

v
e

h
ic

le
s

b
o

a
t+

p
la

n
e

p
e

rs
o

n

 

 

0.34 0.06 0.05 0.00 0.23

0.04 0.36 0.06 0.02 0.12

0.05 0.05 0.20 0.03 0.10

0.02 0.11 0.12 0.05 0.04

0.06 0.07 0.06 0.01 0.00

furniture

animals

land−vehicles

boat+plane

person

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Cluster CAMP Baseline

Figure 1: Confusion Average Precision Matrices (CAMPs) where rows denote the search class and columns denote class-

items retrieved, specified in terms of Average Precision. In the CAMP of clusters only the confusion, i.e. the off-diagonal

elements, is presented. This is the baseline experiment using all patches.

Without context a car is less confused as a bus. But a

bus is not less confused as a car. This suggests that a bus

has the same context as a car but not vice versa: the context

of a car includes the context of a bus. This is supported by

subsequent experiments.

Finally, in the person row nothing changes at all. This

suggests that for the person class the context is not learned,

i.e. a person is context free in this dataset.

4.1.3 Context Patches Only

In this experiment we use only context patches. The dif-

ference between the CAMP of the baseline experiment and

this experiment is shown in figure 2b.

Using only context, the classification for all classes ex-

cept diningtable goes down.

Furthermore, far fewer persons are confused as bottles,

suggesting that the confusion mainly comes from the object

patches. We will come back to this in the next experiment.

Dogs and cats are less confused, but this loss is approxi-

mately the same as the decline of Average Precision of both

classes. This suggests that both share a similar context.

Cars are more often confused as other land-vehicles. The

other way around this is not significant. This suggests that

while the contexts of bicycle, bus, and motorbike are dis-

junct, the car context includes them all. For the bus class

this confirms our earlier observations. Inspecting the top

ranked results (data not shown), we see that the motorbike-

context is dominated by a race circuit and the bus-context is

dominated by urban environments. While cars are present

in both of these contexts, buses rarely race and this dataset

contains few motorbikes in urban environments. For bicy-

cles we could not identify any apparent context.

4.1.4 Object Patches Only

In this experiment we learn and test on the object patches

only. The difference between the baseline CAMP and the

object patches only CAMP is given in figure 2c.

In general the performance increases when only the ob-

ject patches are used: the Mean Average Precision over all

classes is 0.54. This is 0.08 higher than using all patches.

The horse and boat are the only classes that perform worse

without context. For boat the water is obviously important

evidence. For the horse class the jumping contest dominant

in this dataset is important.

Persons are still as often confused with bottles as in the

baseline experiment. This confirms the suspicions of the

previous experiment that confusion here is caused by the

object patches. This suggests that persons and bottles
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(a) Experiment I-2: train all, test object
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(b) Experiment I-3: context patches
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(c) Experiment I-4: object patches
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(d) Experiment II: context+object patches

Figure 2: Confusion Average Precision Matrices (CAMPs) for our various experiments. For clarity we plotted each CAMP

after subtracting it with the baseline CAMP.

either co-occur often or look similar in SIFT terms. Indeed,

in 59% of the bottle images there is a person. But a person

occurs in 77% of the horse class, 66% of the bicycle class,

and 69% of the motorbike class, and these classes do not

exhibit as much confusion as the bottle. Therefore it is more

likely that a person looks like a bottle in SIFT-space.

Cars are significantly less confused with other land-

vehicles, suggesting that context is the source of the con-

fusion in our baseline experiment.

For the person row nothing changes. Like in section

4.1.2, this suggests that a person is context free in this

dataset and that this is learned by the classifier.

The experiments in this section show that context pro-

vides relevant information in this dataset. Therefore the re-

sult of [22] that context is superfluous does not generalise.

4.2. Context as an Extra Information Channel

Having established that context contains relevant infor-

mation, we now test if we can use this information to in-

crease performance. We do this by creating for each image

a separate codebook frequency histogram for the context

and object patches, which are normalized individually.

Then we concatenate them to obtain the final codebook fre-

quency histogram which is used as input into the SVM. The

difference CAMP for this experiment is shown in figure 2d

and looks similar to the object-patch only experiment of

figure 2c. Therefore we will limit our discussion to table

1, which shows the actual Average Precision values of this

experiment, the baseline experiment, and the individual in-

formation channels.

We observe an improvement of 0.12 in Mean Average

Precision over the baseline experiment, which is a relative
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All Context Object Object+Context

bottle 0.192 0.106 0.197 0.210

chair 0.449 0.390 0.454 0.514

diningtable 0.276 0.307 0.580 0.620

pottedplant 0.156 0.119 0.263 0.287

sofa 0.369 0.191 0.519 0.619

tv 0.409 0.337 0.516 0.595

bird 0.378 0.332 0.387 0.498

cat 0.437 0.155 0.508 0.511

cow 0.274 0.161 0.376 0.359

dog 0.367 0.234 0.374 0.386

horse 0.692 0.564 0.568 0.690

sheep 0.284 0.150 0.427 0.535

*bicycle 0.462 0.178 0.621 0.610

bus 0.496 0.272 0.624 0.668

*car 0.690 0.431 0.813 0.807

*motorbike 0.491 0.253 0.592 0.614

train 0.686 0.503 0.742 0.817

aeroplane 0.702 0.522 0.752 0.802

boat 0.623 0.555 0.574 0.696

*person 0.792 0.616 0.836 0.846

mean AP 0.461 0.319 0.536 0.584

Table 1: Average Precision scores for the baseline,

context only, object only, and object+context

experiment. The asterisks (*) denote classes used in [22].

improvement of 26%.

Furthermore, there is an improvement of 0.05 Mean Av-

erage Precision over the object patches only experiment.

For the classes sofa, bird, horse, sheep, and boat this im-

provement is even higher than 0.10. There are no classes

whose performance decreases significantly.

This experiment shows that there is an upper bound of

improvement of 0.12 in terms of Mean Average Precision

by treating context and object patches separately.

4.3. The Spatial Extent of an Object

We determine the best bounding box to recognise each

object in the Pascal 2007 dataset, giving us its spatial

extent. This is done by expanding and shrinking the

bounding boxes denoting the location of the object, which

are then used to make the context/object distinc-

tion as before. Specifically, we multiply the width and

height of the bounding box with respectively 0.6, 0.8, 1,

1.2, and 1.4, while keeping the centre of the bounding

box the same. The resulting area will cover respectively

36%, 64%, 100%, 144%, and 196% of the original bound-

ing box.

We will determine the spatial extent in two settings: us-

ing only object patches, as is common in most object

localization methods, and using context and object

patches separately, which we have shown to give better re-

sults in the recognition task.

4.3.1 Spatial Extent using Object Only

Figure 3a shows the result for using only object patches

for a representative set of objects and for the overall Mean

Average Precision. We can distinguish three trends under

which all but the bird class can be categorised:

1. The object is best recognised if the bounding box fits

tightly around the object. This is the case for din-

ingtable, sofa, tv/monitor, aeroplane, bicycle, bus, car,

motorbike, and train. The objects falling into this cat-

egory are all well defined, rigid objects. All patches of

these objects are informative.

2. For some objects the spatial extent has no clear bor-

der: all extents perform equally well. This is the case

for bottle, pottedplant, cat, cow, dog, sheep, and per-

son. The objects here are all non-rigid objects without

a well-defined shape. Animals have no well-defined

shape because of the high variability of poses they can

assume. Plants grow in all shapes. This suggests a

small part of the object is sufficient for recognition.

Adding extra context does not significantly hurt per-

formance.

3. More spatial context is better. This is the case for

chair, horse, and boat. These object classes all have

a high variability in appearance and are mainly classi-

fied by their function. A boat can be characterized as

a vehicle travelling through water. The function of a

chair is to sit. In this dataset a horse is used for jump-

ing competitions. Their function highly restricts their

context: for a boat this is water, for a chair this is a spe-

cific indoor environment such as a living or conference

room, and for the horse this is the jumping contest.

4.3.2 Spatial Extent using Context and Object

Results for the spatial extent when using both context

and object patches are shown in figure 3b. With the in-

clusion of context information the rigid objects retain

the same behaviour as before. For non-rigid objects small

bounding boxes perform best and enlarging them gradu-

ally decreases performance. This supports the theory that

a small part of the object is sufficient for recognition. The

preference for a small box is probably due to the exclusion

of stray context patches. For functional objects there is little

change; the context is highly important, but is either cap-

tured by the context-patches for smaller bounding boxes

or captured by object-patches for larger bounding boxes.
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(a) object patches only
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(b) context+object patches

Figure 3: The Spatial Extent of an Object for a selection of classes. The various bars per class represent the multiplication

factor of the length and width of the bounding box. The tables provide the Mean Average Precision scores.

In general, using both the context and object

patches results in less sensitivity to the box size. This es-

pecially holds for small boxes.

4.4. The Influence of Localisation Accuracy

In a final experiment, we test how accurate localisation

should be in order to gain improvements in performance on

the recognition task. This is done by adding an error to the

location of the bounding box in the test phase only. We

draw the error from a Gaussian distribution with respect to

the length and width of the bounding box, using standard

deviations of 0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1;

a standard deviation of 1 means that on average the esti-

mated location of the object is exactly besides its true loca-

tion while 66% of these boxes still have some overlap with

the true bounding box. Like before we use object and

context patches separately. Figure 4 presents our results.

We see that recognition accuracy increases heavily with

a more precise localisation of the object patches. A lo-

calisation error of 0.4 results in an accuracy approximately

equal to the baseline experiment, where we observe a sig-

nificant benefit only for diningtable, which increases 0.14

over the baseline at this error rate. For a localisation error

of 0.2 we get a Mean Average Precision of 0.53, which is

already 0.07 higher than the baseline.

The results suggest that only precise localisation of the

object patches gives a performance increase. Therefore a

more precise localisation, for example by using a segmen-

tation, is likely to yield an even better performance than the

bound presented in this paper.
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Figure 4: The influence of Gaussian localisation errors on Mean Average Precision

5. Conclusion

We have shown that context is important in a Bag of

Words framework for this dataset, hence the conclusion of

Zhang et al. [22] that context is superfluous in this frame-

work does not generalise. But as this paper also used a sin-

gle dataset, further experiments are needed to verify if our

results do generalise.

Concerning the spatial extent of an object we can distin-

guish three classes in the Pascal 2007 dataset: (I) Visually

well defined, rigid objects such as aeroplane and tv/monitor.

The spatial extent of these classes include the complete ob-

ject. (II) Non-rigid classes like pottedplant and dog. Their

spatial extent is unbounded: a small part of the object al-

ready suffices for recognition, but some additional context

does not hurt. (III) Functional objects such as chair and

boat. These classes have a large variability in appearance

and rely heavily on their context for recognition. Their pre-

ferred spatial extent is the whole image.

Finally, localising the object patches with a bounding

box, if done precisely, gives an upper bound of 26% relative

improvement in terms of Mean Average Precision for our

dataset. Using a segmentation rather than a bounding box

for localisation is likely to give higher accuracy.
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