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Abstract: This paper addresses the problem of character-
izing a general class of cameras under reasonable, “lin-
ear” assumptions. Concretely, we use the formalism and
terminology of classical projective geometry to model cam-
eras by two-parameter linear families of straight lines—that
is, degenerate reguli (rank-3 families) and non-degenerate
linear congruences (rank-4 families). This model captures
both the general linear cameras of Yu and McMillan [16]
and the linear oblique cameras of Pajdla [8]. From a ge-
ometric perspective, it affords a simple classification of all
possible camera configurations. From an analytical view-
point, it also provides a simple and unified methodology for
deriving general formulas for projection and inverse projec-
tion, triangulation, and binocular and trinocular geometry.

1. Introduction
Several formal models for “general” cameras have been

proposed in the past few years [5, 7, 8, 11, 12, 13, 14, 16,
17]. We propose in this paper a simple framework that
subsumes these models by representing cameras as two-
dimensional linear families of lines. It is well known that
classical pinhole (or central) cameras correspond to rank-
3 line bundles (Figure 1, top): As argued in [9], the per-
spective projection process can be decomposed into an es-
sential part associating with any point x the line (or ray)
ξ passing through the pinhole c, and a secondary one that
associates with ξ its intersection y with the retinal plane
r—that is, its projection (the projective structure of the im-
age is indeed independent of the choice of r as long as it
does not pass through c). In the classical projective geome-
try terminology of Veblen and Young [15], line bundles are
linear families of lines of rank 3. More generally, we will
show in this paper that many other non-central cameras can
be represented by other rank-3 or rank-4 families, includ-
ing elliptic, hyperbolic, and parabolic linear congruences,
corresponding respectively to linear oblique (or bilinear)
cameras [8, 16] and stereo panoramas or cyclographs [12],
two-slit [4, 17] and linear pushbroom cameras [5], and pen-
cil cameras [16]. Subsets of these have previously been
modeled under the formalisms of the general linear cam-
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Figure 1. What a camera is. See text for details.

eras of Yu and McMillan [16] and the linear oblique cam-
eras of Pajdla [8], but never, to the best of our knowledge, in
a fully unified manner. From an analytical perspective, our
model also provides a simple and unified methodology for
deriving general formulas for direct and inverse projection,
triangulation, and binocular and trinocular geometry.

1.1. Contributions

The main contributions of this paper are theoretical.
They can be summarized as follows:
• A unified framework for modeling many types of cen-
tral and non-central imaging devices. A camera as de-
fined in this presentation is (roughly) a device for associat-
ing straight lines with points (Figure 1, bottom). In essence,
a camera has at its disposal a “linear bag” of lines from
which it picks, for any point x, the corresponding line ξ.
As will be shown later in this paper, this process can be de-
composed into first finding a point z = Ax on the line ξ,
which in turn defines this line. This is the essential part of
imaging. As before, there is a secondary part that associates
with x its image y in some retinal plane r. Conversely, an
inverse projection process associates with each image point
y its preimage ξ.
• A geometric classification of the possible camera con-
figurations. As shown in Section 2, classical (line) pro-
jective geometry [10, 15] provides a complete characteriza-
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tion of all physical cameras captured by our model, includ-
ing linear oblique (or bilinear) cameras [8, 16] and stereo
panoramas or cyclographs [12], two-slit [4, 17] and linear
pushbroom cameras [5], and pencil cameras [16].
• A unified analytical framework for describing the
mapping between points and the corresponding lines.
We show in the appendix that this mapping can always be
represented in terms of a 4×4 matrixA. In turn, this affords
simple and general formulas for direct and inverse projec-
tion as well as triangulation (Section 3).
• A general approach to multi-view geometry. We show
in Sections 2 and 3 that the fundamental matrix and trifocal
tensor characterizing admissible binocular or trinocular cor-
respondences for pinhole cameras are readily generalized to
arbitrary pairs or triples of cameras in our model.

As stated earlier, these contributions are (so far) mainly
of theoretical interest. Experiments will follow, and we
hope that the formulas afforded by our framework will
prove of interest for practitioners interested in stereopsis
with rigs that include some non-traditional cameras. In the
mean time, we also hope they will be of interest to people
who want to know “what is under the hood”, so to speak, of
the cameras that are the bread and butter of our profession.

1.2. Related work

Several authors have proposed using a two-plane param-
eterization of lines to model non-central cameras [12, 16].
In this model, two parallel planes pst and puv equipped
with (s, t) and (u, v) coordinate systems are used to param-
eterize all lines by the vectors r = (s, t, u, v)T in R4 associ-
ated with their intersections with the two planes. In particu-
lar, Yu and McMillan propose in [16] a general linear cam-
era (or GLC) model where different types of cameras are
defined in terms of affine combinations of the vectors r1,
r2, and r3 representing three arbitrary lines δ1, δ2, and δ3.
They go on to show that pinhole, pushbroom, two-slit and
bilinear cameras can be represented in a linear manner us-
ing this model, and that they can be classified in terms of the
number of fixed lines that all rays in a camera pass through
(see [13] for a similar idea). Although this model is attrac-
tive, and actually captures many classical camera models,
we believe that it overemphasizes the role of camera param-
eterization relative to their geometry. In particular, a given
GLC model only captures a subset of the corresponding
camera instances. For example, as shown in [16, Lemma
4], the two-slit cameras associated with a GLC model must
have slits parallel to the corresponding two planes.

The general linear camera models proposed in [16]
are mostly concerned with monocular imaging geometry.
Multi-view geometry is well understood for pinhole cam-
eras, and it can be represented analytically in the projec-
tive case in terms of the fundamental matrix and trifocal
tensor associated with two or three cameras. The past

few years have witnessed initial attempts at modeling the
multi-view geometry of specific types of non-central cam-
eras (e.g., [4, 5, 8, 12, 13, 14]). To go further, Seitz and
Kim present in [12] a classification of all stereo image pairs
captured by two central or non-central cameras that can be
fused in the sense that epipolar correspondences always cor-
respond (possibly after rectification) to image rows. This
constraint naturally imposes that the lines associated with
the two cameras sweep a doubly ruled surface—that is, as
shown in [6], a (possibly degenerate) regulus. This setup
imposes a symmetry between the epipolar curves associ-
ated with two matching points: They must be the projection
of the same surface in space. Although this constraint is
necessary for a person to visually fuse two pictures, it is not
clear that it is of great importance for automated approaches
to stereopsis, where the epipolar constraint is mostly used to
restrict the search for correspondences to a one-dimensional
locus. Instead, we derive in this paper general formulas for
the epipolar curves associated with any pair of cameras cap-
tured by our model, and these curves will, as often as not,
have different preimages.

Pajdla examines in [8] oblique cameras such that no two
rays in one camera ever intersect (these are a superset of
the bilinear cameras discussed in [16]), and uses a criterion
similar to that of Seitz and Kim to characterize the families
of oblique camera rays that can be fused in stereopsis. He
goes further and shows that a linear class (in the projective
geometry sense used in this presentation) of oblique cam-
eras can be characterized by associating with any point x
in space the ray joining it to the point Ax, where A is a
particular type of nonsingular projective transformation (el-
liptic involution). As will be shown later in this paper, all
our camera models can also be characterized in this form,
except for the fact that the matrix A may be singular. Pa-
jdla does not give explicit formulas for the epipolar geom-
etry of oblique cameras. Sturm takes a major step in this
direction in [13], where he gives another classification of
camera models in terms of the number of lines intersected
by any line in the corresponding family. Because he does
not impose any constraint on non-central cameras in this hi-
erarchy, the multi-view constraints he derives are expressed
directly in terms of the coordinates of matching camera rays
in some global coordinate system instead of image coordi-
nates. In a sense, this camera model is “too general”: In par-
ticular, unlike the model presented in the rest of this presen-
tation, it does not afford direct or inverse projection formu-
las given some image plane and coordinate basis. Instead,
the association between image points and rays is assumed
to be known through some external calibration process. At
the other end of the spectrum, let us note that Sturm and
Barreto propose in [14] a general model of a specific class
of cameras —namely, central catadioptric ones— in terms
of non-linear families of lines (quadratic complexes).
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2. The geometric picture
2.1. Camera model

From an abstract viewpoint, a camera is a device for
recording scene radiance along a two-dimensional set of
(oriented) straight lines (or, equivalently, for recording a
two-dimensional subset of the light field): For example, a
pinhole camera maps all the rays passing through the pin-
hole onto their intersections with some image plane. The
geometric picture is clear in this idealized case, and the con-
figuration of the projections is (projectively) independent of
the choice of the plane. In this paper, we will ignore pho-
tometry and focus on geometric camera properties for more
general families of lines, modeling them using the tools of
(unoriented, projective) line geometry, and ignoring “nui-
sances” such as distortion, limited field of view, etc. Our
presentation is rooted in the notion of linear dependence
among lines in P3, which is defined in the classical text of
Veblen and Young [15] in purely axiomatic terms (see Sec-
tion 3 for an analytical characterization in terms of Plücker
coordinates): In this formalism, when two lines are copla-
nar, the lines of the flat pencil that contains them—that is the
set of all lines lying in the same plane and passing through
the point where they intersect—are said to be linearly de-
pendent on them. When two lines are skew, the only lines
linearly dependent on them are the lines themselves. The
lines linearly dependent on three skew lines are the lines of
the regulus of which they are rulers (Figure 2, top right).
In general, we say that a line δ is linearly dependent on
n ≥ 3 lines δ1, . . . , δn if there exists some sequence of
lines δn+1, . . . , δn+k, with δ = δn+k, such that each δn+i,
for i = 1, . . . , k, is linearly dependent on two or three lines
among δ1, . . . , δn+i−1. A set of lines, none of which is
linearly dependent on the others, is said to be linearly inde-
pendent. A subset A of any set of lines B is said to span B
when all the lines in B are linearly dependent on the lines
in A, and the rank of B is the minimum number of lines
spanning it.
Definition: A camera is a two-parameter linear family of
lines—that is, a degenerate regulus (rank-3 family), or a
non-degenerate linear congruence (rank-4 family).

This model encompasses pinhole perspective cameras
since, as will be shown next, the corresponding rays form
a bundle of lines passing through the optical center and thus
a degenerate regulus. More generally, it is mathematically
reasonable to restrict the set of cameras to those with such
a linear structure. We will see in the rest of this paper that
this is sufficient to capture most common camera types.

2.2. A classification of camera configurations

According to our definition, any camera corresponds to
a two-dimensional linear family of lines. It turns out that
all of the corresponding line configurations are known, and

Figure 2. Top: reguli. From left to right: a line field formed by
all the lines lying in a plane; two flat pencils lying in different
planes but sharing a line; and a non-degenerate regulus formed
by one of the two rulings of a hyperboloid of one sheet or of a
hyperbolic paraboloid. Bottom: linear congruences. From left to
right: an elliptic congruence, visualized as a one-parameter family
of non-intersecting reguli; a hyperbolic one; and a parabolic one.
Copyright Hans Havlicek, Vienna University of Technology.

classified according to their (linear) rank [2, 10, 15].
The rank-3 families are known as reguli [15, Ch. XI, Th.
13] and they are (Figure 2, top): (3a) the line fields formed
by all the lines in a plane; (3b) all lines passing through
some point (line bundle, see Figure 1, top); (3c) the union
of all lines belonging to two flat pencils lying in different
planes but sharing one line; and (3d) all lines belonging to
a non-degenerate regulus.
The rank-4 families are known as linear congruences and
they are [15, Ch. XI, Th. 14] (Figure 2, bottom): (4a) the
congruences generated by four skew lines (elliptical con-
gruence); (4b) all lines incident to two skew lines (hyper-
bolic congruence); (4c) a one-parameter family of flat pen-
cils, having one line in common (parabolic congruence);
and (4d) all lines lying in a plane or passing through a point
in this plane (degenerate congruence, not shown). As shown
in [10] for example, they can be classified in terms of the
number of focal lines all rays in the congruence intersect:
two real lines for hyperbolic congruences, one (double) real
line for parabolic ones, and two (conjugate) complex lines
for elliptic ones (see [13, 16] for a classification of camera
models similar in spirit, if slightly less general). We will
come back to this characterization in Section 3.
Our definition of cameras as rank-3 or rank-4 linear families
of lines leads to the following classification:
Line fields≡ epipolar-plane cameras. The epipolar-plane
image [1] formed by a 1D camera moving along an arbi-
trary path in a plane that contains all its instances generates
all lines in that plane. The corresponding rays span a rank-
3 line field (Figure 2, top left). We will not discuss these
“cameras” any further since they can only be used to im-
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Figure 3. A two-slit camera and a linear pushbroom camera. Pro-
jectively, the two models are equivalent, the “parallel” planes of
the pushbroom camera meeting along a line “at infinity”.

age a single plane. Note that non-degenerate reguli and the
degenerate reguli formed by two flat pencils sharing a line
only intersect any retinal plane along a conic or a pair of
lines instead of a two-dimensional image region. For this
reason, they do not qualify as bona fide cameras either.
Line bundles ≡ pinhole cameras. Line bundles are dual
to line fields and, as discussed earlier, they correspond to
pinhole cameras (Figure 1, top).
Elliptic congruences ≡ linear oblique cameras. An el-
liptic congruence is generated by four skew lines such that
none of them intersects the regulus generated by the other
three. Its elements form a one-parameter family of “con-
centric” reguli [10] (Figure 2, bottom left), with exactly one
line going through each point of space. This is a linear
oblique camera as defined in [8] (or a bilinear camera as
defined in [16]). Physical instances of this camera type in-
clude stereo panoramas or cyclographs [12], as well as the
catadioptric systems described in [8].
Hyperbolic congruences≡ two-slit cameras. Hyperbolic
congruences correspond to two-slit cameras [4, 17] (Fig-
ure 3, left). Linear pushbroom cameras [5] are formed by
sweeping one-dimensional pinhole cameras along some line
orthogonal to their retinal planes (Figure 3, right). Although
this is not always recognized, they are just an instance of
two-slit cameras, the second slit being the line at infinity
common to the parallel planes.
Parabolic congruences ≡ pencil cameras. A parabolic
congruence is a one-parameter continuous family of flat
pencils sharing a common line. This appears to correspond
to a pencil camera as defined by Yu and McMillan [16]. Al-
though we are not aware of any physical realization of pen-
cil cameras, one can certainly imagine a one-dimensional
camera whose optical center translates along a line as it ro-
tates about it (Figure 2, bottom right).
Degenerate congruences ≡ two-slit cameras when the
slits are coplanar. A degenerate congruence consists of
the union of all lines in a plane with the bundle of lines
through a point in that plane. This is exactly the set of all
lines intersecting two coplanar lines, the center of the bun-
dle being the point where the two slits intersect [4]. We will
not consider these any further.

2.3. Multi-view geometry

Consider two arbitrary cameras in our model. By con-
struction, a line δ1 associated with the first camera is al-
ready linearly dependent on three or four lines depending
on the rank k of the corresponding family. For the point
where δ1 pierces the image plane to match a point in the
second image, δ1 must intersect the corresponding line δ2,
and thus satisfy one additional linear constraint. In particu-
lar, the lines from the first camera intersecting δ2 must form
a rank k− 1 family—that is, depending on k, a regulus or a
flat pencil of lines. The lines from the second family inter-
secting δ1 also form a flat pencil or a regulus, but the two
line sets may not sweep a common surface, and the epipolar
locus will consist of lines or conics. We will give analytical
formulas characterizing these in the next section.

3. The analytical picture
We have so far restricted our discussion of cameras to a

purely geometric one. It is now time to take a more ana-
lytical viewpoint which, in turn, requires choosing param-
eterizations for our cameras. For this, it will be convenient
to introduce the Plücker parameterization of straight lines,
defined in the next section, along with the fundamental join
and meet operators. We will assume throughout this section
that the projective space P3 has been equipped with a fixed
coordinate system, and identify points and planes with their
(homogeneous) coordinate vectors in this basis, “=” denot-
ing equality up to scale among these vectors.

3.1. Plücker coordinates

The join operator “∨” associates with two points x and
y the line x ∨ y joining them. This geometric operator has
an analytical counterpart, and we will use the same notation
for both: we define the Plücker coordinate vector of the line
joining x and y as x ∨ y = (u;v), where

u =

x4y1 − x1y4

x4y2 − x2y4

x4y3 − x3y4

 , v =

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 ,

and, in “Matlab fashion”, we use the “;” symbol to indicate
that the coordinates of u and v have been stacked onto each
other to form a vector of R6. We will from now on identify
lines with their Plücker coordinate vectors in some fixed but
otherwise arbitrary coordinate system. Plücker coordinates
are homogeneous, and lines form a quadratic hypersurface
L4 of dimension 4—the Klein quadric—in the projective
space P5: Indeed, it follows immediately from the definition
of the join that the Plücker coordinate vector δ = (u;v)
of a line satisfies the quadratic constraint u · v = 0. It
is in fact possible to define an inner product in L4 by the
formula (δ|η) def= u · t + v · s, where δ = (u;v) and
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η = (s; t). A vector δ in R6 represents a line if and only
if (δ|δ) = 0, and it can also be shown that a necessary and
sufficient condition for two lines δ and η to be coplanar is
that (δ|η) = 0. When δ = (u;v), it is convenient to define
the vector δ∗ = (v;u) so that (δ|η) = δ∗ · η = δ · η∗.
The meet operator associates with two planes p and q the
line p∧q. Analytically, the corresponding Plücker vector is
p∧q = (p∨q)∗. The join operator can be extended to lines
and points: Given a line δ and a point x not lying on δ, we
define the join δ ∨x of δ and x as the plane spanned by the
line and the point. Likewise, we define the meet δ ∧ p of
a line δ and a plane p that does not contain δ as the point
where the intersect. Analytically, it is easy to show that if
λ = p ∧ q and µ = x ∨ y, then{

λ ∨ x = [λ∨]x where [λ∨] def= pqT − qpT ,

µ ∧ p = [µ∧]p where [µ∧] def= xyT − yxT .

A necessary and sufficient condition for a point x to lie on a
line δ is that δ∨x = 0. Likewise, a necessary and sufficient
condition for a plane p to contain a line δ is that δ ∧p = 0.
Finally, the join of three points x, y, and z is the plane
spanned by these points, defined analytically by x∨y∨z

def=
(x ∨ y) ∨ z. The meet of three planes p, q, and r is the
point where these planes intersect, defined analytically by
p ∧ q ∧ r

def= (p ∧ q) ∧ r.

3.2. Screws and linear complexes

Straight lines can be identified with points on the Klein
quadric via Plücker coordinates. Following the mechanics
literature, we call screws the elements s of P5 not neces-
sarily lying on this quadric—that is, they may not verify
(s|s) = 0, and say that two screws s and t are reciprocal
when (s|t) = 0. A screw s can be identified with the linear
complex formed by all lines δ such that (s|δ) = 0. Two
screws s and t define a straight line λs+µt in P5, or equiv-
alently, a pencil of linear complexes whose carrier, defined
as the set of all lines reciprocal to all screws in the pencil, is
a linear congruence.

There are three types of pencils of complexes and, ac-
cordingly, three types of linear congruences (Figure 4, left):
a hyperbolic pencil intersects the Klein quadric in two real
points, an elliptic pencil intersects it in two conjugate com-
plex points, and a parabolic pencil intersects the Klein
quadric in a double real point (tangency). The lines in the
corresponding congruences respectively intersect two real
lines, two complex conjugate lines, and a double real line.
In the latter case, the pencil and the associated congruence
are defined by a line δ and a screw s in the hyperplane T
tangent to the Klein quadric in δ (Figure 4, right). It is easy
to show that the two are reciprocal. The intersection γ of the
Klein quadric with T consists of all the lines intersecting δ.

Figure 4. Left: The straight lines e, h, and p respectively depict
elliptic, hyperbolic, and parabolic pencils of complexes intersect-
ing the Klein quadric in two complex conjugate points (and no
real point), two real points, and a double real point. Right: A line
δ and a screw s in the tangent hyperplane T to the Klein quadric
in δ define a parabolic pencil of complexes and the correspond-
ing congruence. These drawings are for illustration only since the
corresponding geometric elements “live” in P5.

3.3. The essential map of a camera

It is easy—if a bit tedious (see appendix)—to derive for
every camera captured by the formalism proposed in this
paper an explicit formula for the corresponding essential
map—that is, the map x → ξ associating with every point
x the ray ξ of the camera passing through this point.

For a pinhole camera, ξ = c ∨ x. As shown in the ap-
pendix, the essential map for the camera associated with
any linear congruence can always be written as ξ = x∨Ax
for some 4 × 4 matrix A. This was originally shown by
Pajdla [4] for linear oblique cameras—that is, elliptic linear
congruences—for which A is a nonsingular elliptic involu-
tion. We show in the appendix that this is also the case for
hyperbolic and parabolic congruences, although the matri-
ces A are singular in these cases. We also show in the ap-
pendix that, in the case of hyperbolic and elliptic cameras,
we can write the essential map in a different form—that is,
as ξ = X x̂, where X is a 6 × 4 matrix whose columns
are screws, and x̂ is a vector in R4 whose components are
quadratic forms in x. In the rest of this section, we use
these analytical forms of the essential map to derive explicit
formulas for several fundamental geometric problems.
Note: We assume from now on that the “internal projec-
tive parameters” of our cameras are known—that is, the co-
ordinates of all points, planes, and lines defining them are
known in some fixed but arbitrary projective coordinate sys-
tem. We will discuss briefly totally uncalibrated and fully
(metrically) calibrated cameras in Section 4.

3.4. Direct projection

Let us consider an image plane r equipped with a
(projective) basis (y1,y2,y3),1 and denote by u =

1We assume here that the relative scales of the vectors yi are fixed.
This can be done (for example) by picking a fourth unit point in r to com-
plete the specification of a projective coordinate system for that plane.
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(u1, u2, u3)T the coordinate vector of any point y in the
plane r. In particular, we can write y = Yu, where Y is
the 4× 3 matrix Y = [y1,y2,y3]. This matrix is rectangu-
lar and non invertible. However, it admits a three-parameter
family of pseudo inverses Y+

z such that Y+
zY = Id, and we

have

u = Y+
z y, where Y+

z
def=

(y2 ∨ y3 ∨ z)T

(y3 ∨ y1 ∨ z)T

(y1 ∨ y2 ∨ z)T

 (1)

for some point z arbitrarily chosen outside the image plane.
Note that the 3 × 4 matrix Y+

z is the dual of an inverse
projection matrix as defined in [3] for example.

Let us use this notation to derive the projection equations
for a pinhole camera in a purely projective manner. We con-
sider a pinhole camera with optical center x, the optical ray
ξ associated with a point x is ξ = x∨c and the correspond-
ing image point is y = ξ∧r = (c·r)x−(x·r)c. Now, using
Eq. (1) with z = c, we obtain u = (c·r)Y+

c x−(x·r)Y+
c c.

Thus, since c belongs to the three planes associated with the
rows of Y+

c , we have u = Px, where P def= Y+
c .

Let us now come back to the case of a linear congruence
for which the ray associated with some point x is ξ = x ∨
Ax. The image of x is

y = ξ ∧ r = ((Ax) · r)x− (x · r)Ax,

and the coordinate vector u of the image point y can thus
be written as

u = ((Ax) · r)Y+
z x− (x · r)Y+

zAx,

or, since r = y1 ∨ y2 ∨ y3,

u = |Y,Ax|Y+
z x− |Y,x|Y+

zAx,

where |U ,v| denotes the determinant of the 4 × 4 matrix
whose first three columns are given by the 3 × 4 matrix U ,
and whose last column is the vector v of R4. The choice of
z (outside of the plane r) is once again arbitrary.

3.5. Inverse projection

Let us now consider an image point y with coordinate
vector u in some coordinate system (y1,y2,y3) of the
retina. Its preimage is

ξ = y ∨ Ay = (
3∑

i=1

uiyi) ∨ (
3∑

i=1

uiAyi),

which can be rewritten as

ξ =
3∑

i=1

u2
i ξii +

∑
i<j≤3

uiuj(ξij + ξji),

where ξij = yi∨Ayj . In other words ξ can be written as a
linear combination of six fixed screws (when ξij and ξji are
not coplanar, their sum is a screw but not a line). In fact, it is
shown in the appendix that it is always possible to write ξ as
a linear combination of k fixed screws ξi (= 1, . . . , k), with
k = 4 for hyperbolic and elliptic congruences, and k = 5
for parabolic ones, and with coefficients that are quadratic
functions in u. In other words, we can always write

ξ = P̂T û, where P̂T = [ξ1, . . . , ξk], (2)

and û is a vector of Rk whose components are quadratic
forms in u (with known coefficients given our assumption
of known internal projective parameters). Note the similar-
ity with the familiar 3× 6 line projection matrix associated
with pinhole cameras [3].

3.6. Triangulation

Let us consider n ≥ 2 image points yi (i = 1, . . . , n)
with coordinates ui. The triangulation problem is to find
the point x that projects onto these cameras. We write that
the corresponding rays ξi = P̂T

i ûi must pass through x, or
[ξi∨]x = 0 for i = 1, . . . , n. This is a 4n × 4 system of
homogeneous linear equations in x, of which 2n are inde-
pendent since each matrix [ξi∨] has only rank 2, and the cor-
responding homogeneous linear least-squares problem can
be solved as an eigenvalue problem.

3.7. Epipolar geometry

As noted in Section 3.5, for any non-degenerate linear
congruence, the line ξ associated with a point y with coor-
dinates u in some image plane r can be written in the form
of Eq. (2) for some k × 6 matrix P̂ with k equal to 4 or 5,
and some vector û of Rk whose components are quadratic
forms in u. This equation also holds for k = 3 when P̂ is
a 3 × 6 line projection matrix and û = u [3]. It follows
that, given any two cameras with k1×6 and k2×6 matrices
P̂1 and P̂2, and two image points with coordinates u1 and
u2 and associated projection rays ξ1 and ξ2, the epipolar
constraint can be written as 0 = (ξ1|ξ2) = ξT

1 ξ∗2, or

ûT
1 Fû2 = 0, where F = P̂1P̂∗T2 .

where P̂∗ is the matrix obtained from P̂ by swapping its
first three columns with its last three. The k1 × k2 matrix
F is the generalization of the usual fundamental matrix as-
sociated with pinhole cameras. It should be noted that since
the matrix P̂ associated with a two-slit camera (hyperbolic
congruence) has only 4 rows (k = 4), the fundamental ma-
trix associated with two two-slit cameras is only a 4 × 4
matrix, a more “economical” parameterization of epipolar
geometry than the rank-4 6 × 6 matrix constructed in [4]
(see [13] for a different construction of a 4× 4 fundamental
matrix for metrically calibrated two-slit cameras).
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3.8. Three-view geometry

Formulas for the trinocular case are easily derived as
well using the general trilinear constraints obeyed by three
lines intersecting in a point [9], i.e.,

Ti(ξ1, ξ2, ξ3) = 0 for i = 1, . . . , 4,

where Ti is a 6× 6× 6 tensor. This translates immediately
into the following three-view constraints verified by three
matching image points with coordinates u1, u2, and u3:

T̂i(û1, û2, û3)
def= Ti(P̂T

1 û1, P̂T
2 û2, P̂T

3 û3) = 0

for i = 1, . . . , 4. These polynomial constraints are the gen-
eralization of the trifocal constraints associated with pin-
hole cameras. The maximum size of the corresponding ten-
sor is 5× 5× 5, with at most triquadratic constraints.

4. Discussion
We have presented a unified framework for representing

many of the cameras discussed in the literature as linear
families of lines of rank 3 or 4. In turn, this has allowed us
to derive simple and general formulas for monocular and
multi-view geometry. Besides practical applications—e.g.,
an implementation of the multi-view tensors presented in
this paper—many open theoretical problems remain. For
example, is it possible to find a simple parameterization of
linear parabolic congruences in terms of four fixed screws,
as was done for elliptic and hyperbolic ones? This would
bring down the size of all fundamental matrices to 4 × 4.
Our approach has been purely projective. What about
Euclidean cameras, their “internal” parameters, and self
calibration? Conversely, what about totally uncalibrated
cameras, for which the (inverse) projection matrices are
unknown? In this case, the parameters of the quadratic
forms associated with inverse projection and multi-view
geometry are also unknown, leading back to 6 × 6 fun-
damental matrices. Does knowing these determine the
cameras’ projective parameters? Another interesting issue
is to go back to photometry and study how our cameras
sample the light field, as proposed in [7]. Much remains to
be done.
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and Triangles. The author thanks H. Havlicek for providing
several of the figures, as well as X. Goaoc and the Willow
team for useful discussions and comments.

5. Appendix
We derive in this appendix the equation relating, for each

non-degenerate line congruence, any point x to the corre-
sponding line. In each case, we show that it can be written

Figure 5. Parameterizing a hyperbolic linear congruence (left) and
a parabolic one (right, the plane p3 and the corresponding flat pen-
cil are not shown in the figure).

in terms of some operator A that maps x onto some other
point Ax on ξ, which in turn allows us to write the action
of a camera in the form x → x ∨ Ax.

5.1. Hyperbolic linear congruences

Let us consider a line ξ passing through some point x in
the hyperbolic congruence formed by all lines intersecting
the two real focal lines δ1 = p1 ∧ q1 and δ2 = p2 ∧ q2

(Figure 5, left). We can write

ξ = (δ1 ∨ x) ∧ (δ2 ∨ x)
= [(q1 · x)p1 − (p1 · x)q1] ∧ [(q2 · x)p2 − (p2 · x)q2],

which is easily rewritten as ξ = X x̂, where

X = [q1 ∧ q2,p2 ∧ q1, q2 ∧ p1,p1 ∧ p2],

and

x̂ =

xT (p1p
T
2 )x

xT (p1q
T
2 )x

xT (q1p
T
2 )x

xT (q1q
T
2 )x

.

Note that the columns of X are lines in the congruence.
Given an image point y with coordinates u in some ba-
sis (y1,y2,y3) of the image plane, its preimage is thus
ξ = P̂T û, where P̂ = X T , and û is a vector of R4 with
components that are quadratic forms in u.2 This provides a
more “compact” alternative to using the general machinery
of Section 3.5 to construct a 6× 6 matrix P̂ .

Let us now show that, as mentioned in Section 3.5, hy-
perbolic congruences can in fact be represented by a linear
mapping A. We define the four points: a1 = p1 ∧ q1 ∧ p2,
b1 = p1∧q1∧q2, a2 = p2∧q2∧p1, and b2 = p2∧q2∧q1,
so that we have δi = ai ∨ bi for i = 1, 2. It is easy to show
that the points where ξ intersects δ1 and δ2 are respectively3{

z1 = (q2 · x)a1 − (p2 · x)b1,
z2 = (q1 · x)a2 − (p1 · x)b2.

2The coefficients of these quadratic forms are projective invariants, but
depend of course on the choice of the parameterization of the camera by
the planes p1, q1, p2, and q2, and by the points y1, y2, and y3.

3This formula is correct for this particular choice of points on δ1 and
δ2. It would be false for arbitrary points not lying in the proper combina-
tion of planes pi and qi.
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In particular, we have ξ = x ∨ (A1x) = x ∨ (A2x),
with A1 = a1q

T
2 − b1p

T
2 and A2 = a2q

T
1 − b2p

T
1 .

5.2. Parabolic linear congruences

A parabolic congruence is a one-parameter continuous
family of flat pencils sharing a common line δ, such that
the successive planes pt in the pencil of planes δ∗ passing
through δ and the centers at of the corresponding flat pen-
cils are in projective correspondence [10, Th. 3.2.9]. In
particular, let us consider three planes p1, p2, p3 in δ∗ and
the corresponding points a1, a2, and a3. A line ξ in the
congruence passing through the point x can be character-
ized as follows (Figure 5, right): It lies in a plane p in the
pencil δ∗ and passes through a point z of δ such that{

z = αa1 + βa2

p = αp1 + βp2
with

{
a3 = a1 + a2

p3 = p1 + p2
,

where the rightmost equalities fix the relative scales of all
vectors. Since δ = p1∧p2, we have p = δ∨x = (p1p

T
2 −

p2p
T
1 )x, and it follows that α = x · p2 and β = −x · p1.

In turn, we have

ξ = z ∨ x = [(x · p2)a1 − (x · p1)a2)] ∨ x. (3)

Note that Eq. (3) can be rewritten as ξ = x∨Ax, similar
to the formula for linear oblique cameras given in [4], but
the projective transformationA = a1p

T
2 −a2p

T
1 is singular

with rank 2 in our case.
Given an image point y with coordinate vector u in some

basis (y1,y2,y3) of the image plane, we can now use the
general method of Section 3 to write its preimage ξ as a lin-
ear combination of six of the lines yi ∨Ayj (i, j = 1, 2, 3).
Since any of these lines intersects the line δ, only five of
them are in fact linearly independent, which finally allows
us to write ξ = P̂T û for some 5 × 6 matrix P̂ easily com-
puted from the given points yi.

5.3. Elliptic linear congruences

Pajdla [4] has shown that elliptic congruences can be
characterized by an elliptic involution A such that the line
ξ associated with a point x is ξ = x ∨Ax. Remember that
an elliptic linear congruence is formed of all lines intersect-
ing two conjugate complex focal lines δ and δ̄, where ū
denotes the conjugate of any vector u in Cn (Figure 4). Let
us take δ = p∧ q, then the conjugate of δ can be written as
δ̄ = p̄ ∧ q̄. Similar to Section 5.1, we obtain

ξ = [(q · x)p− (p · x)q] ∧ [(q̄ · x)p̄− (p̄ · x)q̄],
= (q · x)(q̄ · x)p ∧ p̄− (q · x)(p̄ · x)p ∧ q̄
− (p · x)(q̄ · x)q ∧ p̄ + (p · x)(p̄ · x)q ∧ q̄.

Now, let p1 and p2 denote the real and imaginary parts
of p, and q1 and q2 denote the real and imaginary parts

of q. Using the properties of complex conjugates and the
antisymmetry of the meet operator, it is then easy (if a bit
tedious) to show that ξ = X x̂, where

X = [p1∧p2,p2∧q1 +q2∧p1,p1∧q1 +p2∧q2, q1∧q2]

and

x̂ =

 (q1 · x)2 + (q2 · x)2

(q1 · x)(p1 · x) + (q2 · x)(p2 · x)
(q2 · x)(p1 · x)− (q1 · x)(p2 · x)

(p1 · x)2 + (p2 · x)2

.

The second and third column of X are not lines but only
screws since the lines p2 ∧ q1 and q2 ∧ p1 are mutually
skew, and so are p1 ∧ q1 and p2 ∧ q2. It follows that the
preimage of an image point y, with coordinates u in some
basis (y1,y2,y3) of the image plane, can be written in the
usual form ξ = P̂T û, with P̂ = X T .
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