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Abstract

Image parsing remains difficult due to the need to com-

bine local and contextual information when labeling a

scene. We approach this problem by using the epitome as a

prior over label configurations. Several properties make it

suited to this task. First, it allows a condensed patch-based

representation. Second, efficient E-M based learning and

inference algorithms can be used. Third, non-stationarity is

easily incorporated. We consider three existing priors, and

show how each can be extended using the epitome. The sim-

plest prior assumes patches of labels are drawn indepen-

dently from either a mixture model or an epitome. Next we

investigate a ‘conditional epitome’ model, which substitutes

an epitome for a conditional mixture model. Finally, we de-

velop an ‘epitome tree’ model, which combines the epitome

with a tree structured belief network prior. Each model is

combined with a per-pixel classifier to perform segmenta-

tion. In each case, the epitomized form of the prior provides

superior segmentation performance, with the epitome tree

performing best overall. We also apply the same models to

denoising binary images, with similar results.

1. Introduction

We investigate epitome priors for image parsing, the task

of estimating a label for each pixel in a scene corresponding

to its object category (see Figure 1). In general, the prior

embodies knowledge about which configurations of labels

are likely, and which not. For instance, we may see a chair

next to a table, above the floor and surrounded by wall, but

are unlikely to see a chair above a table on top of a window.

Recent approaches (e.g. [6, 15]) use a local unary clas-

sifier to provide an initial labeling, and a prior to disam-

biguate these estimates using larger context. This prior must

be able to describe complex high-dimensional distributions

over label configurations. Further desirable characteristics

include (i) efficient parameterization, (ii) effective learning

and inference algorithms, and (iii) the ability to incorporate

aspects such as symmetry constraints and non-stationarity

(i.e. variation of the prior with location in an image).

Figure 1. Using an epitome prior for multi-class segmentation. We

first divide the image into a regular lattice of superpixels (a). A

unary classifier provides an initial per-pixel class estimate (b). We

refine this estimate by combining it with patches from an epitome

prior learned at the superpixel level (c) to produce a coarse seg-

mentation (d). This segmentation is refined (iteratively) using per-

image class color models to produce a pixel level segmentation (f);

the ground truth is shown in (e).

The simplest priors use undirected models such as

Markov random fields (MRFs) or conditional random fields

(CRFs) to describe relationships between neighboring la-

bels [5, 10, 15]. Efficient inference algorithms are known

for these models. Unfortunately, since only local relation-

ships are considered, these priors only include information

about pairwise object adjacency, and cannot represent inter-

actions of more than two objects, or object shape.

These undirected models have been extended to incor-

porate potentials over larger clique sizes. He and Zemel

[6] learn a prior based on overlapping global and local ‘la-

bel features’ in their Multiscale Conditional Random Field

model. This allows for a rich representation, but sampling

is required during inference. In contrast, Kohli et al. pre-

sented efficient algorithms to deal with large clique sizes

[9], but with restrictions on the types of potential function

modeled and hence limited representational ability.

Another approach is to use directed models [1, 3, 4,

17]. Contrasting possibilities include the Markov structured

prior of Domke et al. [3] and the tree structured prior of

Feng et al. [4]. These directed models have algorithmic ad-

vantages and only mild impositions on representation. Like

most priors though, they have difficulties incorporating non-
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stationarity without a drastic increase in parameters.

The epitome [8] forms a condensed representation of an

image from which patches can be drawn to generate the

original. The epitome was not intended as a prior and orig-

inally described distributions over continuous values rather

than multi-valued labels. However, it has recently been used

with discrete features [13] and several characteristics en-

courage its use as a prior. First, it can represent complex

image data with a small number of parameters. Second, its

generative form means that efficient E-M algorithms can be

used. Third, non-stationarity is easily incorporated.

In this paper we apply the epitome to image labeling.

We compare three priors and their ‘epitomized’ versions.

The first involves independent patches, that are either drawn

from a mixture model, or an epitome. In the second model,

we extend the directed prior of Domke et al. [3] to form a

‘conditional epitome’. In the third we adapt the tree struc-

tured belief network [4] to form an ‘epitome tree’.

The structure of the paper is as follows. Section 2 out-

lines our three models. In section 3 our priors are used to de-

noise handwritten digits. In section 4 we investigate multi-

class segmentation on the Corel and Sowerby databases.

Section 5 then offers a summary and future directions.

2. Methods

For each model we assume that we observe a feature

vector xs at each pixel s, where s indexes the pixel sites

S = {s1...S}. For each site, we wish to infer the values

of an unobserved label ls that represents the class of object

present at this pixel. The label takes values 1...K where

K is the total number of object classes being considered.

We assume that we also have the output of a generative or

discriminative unary classifier ψsk providing a measure of

evidence for the class k begin present at site s.

This paper concerns prior distributions over configura-

tions of the label field l. Rather than explicitly model the

joint configuration of the entire image, our models operate

on square patches of the image/label fields pn, n = 1...N ,

pn ⊂ S. These may or may not overlap depending on the

particular model. We sometimes use relative notation so

that lpn(i) denotes the label l that is associate with the i’th

pixel of the n’th patch.

2.1. Epitomized Mixture of Multinomials

We first consider a mixture of multinomials (MoM)

prior model (illustrated for the 1-d case in Figure 2). In

this model, non-overlapping patches are modeled indepen-

dently. There is a hidden variable h associated with each

patch, representing which of C possible components from

the multinomial mixture is relevant for this patch. When

component c is active (i.e. h = c), the labels lp(i) are mod-

eled as independent draws from the multinomial distribu-

Figure 2. (Epitomized) Mixture of Multinomials Model. The la-

bels, l, are dependent on the observations at each pixel, x, and

hidden variables, h, which select components from a multinomial

mixture or epitome for non-overlapping patches.

tions for c at each site i across the patch p. The parameters

θcik describe the probability of observing label k at pixel i

within the patch when component c is active. We can write

this prior as:

Pr(l) =
∏

n

∑
c Pr(hn = c)Pr(lpn

|hn = c)

=
∏

n

∑
c αc

∏
i θc,i,lpn(i)

(1)

where αc is the weight of the c’th mixture component.

One disadvantage of this model is that it is rather waste-

ful of parameters: since the grid of image patches is regu-

lar and non-overlapping, the mixture components must ex-

plicitly encode all small translations of label configurations.

This problem can be resolved by introducing the epitomized

mixtures of multinomials (EMoM) model.

As before we model the image as consisting of regular,

non-overlapping image patches. However, we now repre-

sent the parameters of the prior as a single 2-d array termed

an epitome. An epitome with sites T = {t1...T } is or-

ganized into T overlapping epitome patches q1...T of the

same size as the image patches. Here, we have assumed

a toroidal structure so patches that start at the very bottom

of the epitome are completed at the top. As in the MoM

model, there is a hidden variable h associated with each im-

age patch. However, now the hidden variable takes values

from 1...T and indexes the position within the epitome from

which the patch of multinomial parameters are taken. The

EMoM model can be written as:

Pr(l) =
∏

n

∑
t Pr(hn = t)Pr(lpn

|hn = t)

=
∏

n

∑
t αt

∏
i θqt(i),lpn(i)

(2)

where αt is the probability of selecting patch qt of pa-

rameters from the epitome and θtk are the multinomial

parameters at epitome position t for class k. Hence the

term θqt(i),lpn(i)
evaluates the probability of observing label

lpn(i) at the i’th pixel of the n’th image patch pn by tak-

ing the probability value stored at the i’th pixel of the t’th

epitome patch qt. Figure 3 summarizes the main notation.
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Figure 3. Summary of notation.

Figure 4. Comparing mixture and epitome models. For the same

number of parameters, the epitome is more expressive than a sim-

ple mixture. The mixture above models 4 patches separately, while

the epitome extracts 9 patches by arranging the variables in a 2-d

array. 16 patches can be extracted if a toroidal structure is as-

sumed.

Figure 4 illustrates the advantages of this parameteri-

zation. The epitome enables us to build expressive mix-

ture models using a restricted number of parameters due to

the effective sharing of θ elements between mixture com-

ponents. Moreover, translation invariance is automatically

built into the epitomic representation and the model doesn’t

waste resources modeling small patch shifts.

2.1.1 Training

For training, we use the expectation maximization (EM)

algorithm [2] to maximize a lower bound on the log-

likelihood of a set of training label patches, l1...N , given

the epitome parameters, e = {α, θ}. For the E-step, we cal-

culate the posterior probabilities γnt that training patch n

was generated from the t’th patch in the epitome:

γnt =
αt

∏
i θqt(i),lpn(i)∑

t′ αt′
∏

i θqt′ (i),lpn(i)

(3)

In the M-step we update the epitome parameters:

αt =

∑
n γnt

N
(4)

θtk =

∑
n,i∈Ωt

γni · [lpn(φt(i)) = k]
∑

n,i∈Ωt,k′ γni · [lpn(φt(i)) = k′]
(5)

where the set Ωt = {i ∈ T |t ∈ qi} represents sites t in

the epitome whose patches qi include the given site i, and

φt(i) = j s.t. qi(j) = t is the position of site t in epit-

ome patch qi. [·] is the zero-one indicator function. The

weighted sums in Equation 5 thus consider all the possible

epitome patches that overlap with a given site t, combining

the evidence for class k at t from across the training data by

looking at its frequency of occurrence at the relevant posi-

tions in the training patches.

2.1.2 Inference

For inference in multi-labeling tasks we combine the

EMoM prior with a unary classifier (see Figure 2). The

unary classifier takes the feature vector, xs, and gives a dis-

tribution ψs,k=1...K over the class label at ls. To combine

these unary estimates Prun(l|x) = ψ with our learned prior

Prpr(l), we treat them as CRF potentials via:

Pr(l|x) =
1

Z
Prun(l|x)λ · Prpr(l) (6)

where λ is a weighting factor. We could in principle learn

the unary classifier and prior simultaneously. However, the

piecewise approach makes training more tractable, and has

been shown to give good results (eg. [6, 15, 16]).

It is difficult to directly maximize the log posterior

log[Pr(l|x)] of the labels given the observed data because

of the hidden variables in the prior. Instead we use a poste-

rior EM approach in which we maximize a lower-bound on

the log-posterior. Due to the assumption of independence,

inference is performed for each patch in the test image l1...N

separately. In the E-step, we calculate the posterior prob-

abilities γnt that the current assigned labels in the patch

were generated from each site t in the epitome (exactly as in

Equation 3). In the M-step we maximize the current bound

over l. To this end, we update lpn(i) as:

lpn(i) = argmaxk{
∑

t

γnt[λ log ψpn(i),k + log θqt(i),k]}

(7)

2.2. Conditional Epitome

The above model uses independent non-overlapping

patches, limiting its representation power. Jojic et al. [8]

proposed to resolve this problem by using independent

overlapping patches. This was adequate for their applica-

tions but unattractive in the context of a prior as it will lead

to overconfidence. In this subsection and the following, we

propose two alternative extensions to transform the epitome

into a model of the entire label field.

The conditional epitome was inspired by the directed

model priors of Domke et al. in [3]. In 1-d these take the

form of an n’th order Markov chain (see Figure 5a). In 2-d,

Domke et al. propose parent-child relationships such that

for a 5 × 5 patch, the central (child) site is conditioned on

(parent) sites above and to the left (Figure 5b). Samples

can be drawn from the distribution by scanning the sites in
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Figure 5. a) Conditional Epitome Model. Each label l is condi-

tioned both on observations x, and nearby preceding l’s. The fac-

tors within the prior are modeled as conditional mixture or epit-

ome distributions. b) Parent (blue) and child (cross) nodes in the

2-d version of the model are arranged as shown.

column-major order. Domke et al. argue this model is sim-

pler than undirected forms, such as MRFs and CRFs, but

the Markov blanket over individual pixels is similar.

A logical choice for describing the dependencies be-

tween parents and child in our case would be a conditional

mixture of multinomials (CMoM). This is formed by divid-

ing a joint MoM distribution over parents and child with

the marginal over just the parents. In our proposed model

we go a step further, and substitute the epitome to create a

conditional epitome model (or ECMoM).

For each image site s we have parents pa(s) ∈ S. Unlike

the independent patches model which had non-overlapping

patches in the image, now the patches are densely extracted

from both image and epitome. These are denoted by ps

and qt, where ps = {pa(s), s}, and qt is defined as before

(but with an irregular patch shape to match the parent/child

combinations in the image). As well as these patches of

size I = |{pa(s), s}|, we also extract patches of size I −
1 which are notated p⋆

s and q⋆
t , where p⋆

s = {pa(s)} and

q⋆
t = qt(1...I − 1). Using this notation, the conditional

distribution for the ECMoM model is defined as:

Pr(ls|lpa(s)) =
Prpr(ls, lpa(s))

Prpr(lpa(s))
=

∑
t αt

∏
i θqt(i),lps(i)∑

t αt

∏
i⋆ θq⋆

t (i⋆),lp⋆
s (i⋆)

(8)

where i ∈ {1...I} and i⋆ ∈ {1...I − 1}. Because of the

directed form of the model, the joint distribution across the

image is formed by simply taking the product at all sites:

Pr(l) =
∏

s

Pr(ls|lpa(s)) (9)

2.2.1 Training

Since we are now modeling conditional rather than joint

distributions, we maximize the conditional log likelihood

of the data given the parameters. Following [3], this is

achieved by gradient ascent, as the standard E-M bound

is no longer applicable. Training data comes in the form

of n = 1...N training patches, where pn(1...I − 1) =

Figure 6. Epitome Tree. Class labels l
L are dependent on the

observations, x, and a tree of unobserved labels l
0...L−1, which

forms the prior. Links from levels 2 to L are modeled as an epit-

ome over class labels (a). Links from levels 0 to 1, and 1 to 2

are modeled as epitomes over patch indices at the next level down

(b,c). A prior is also placed across the labels at the tree root (d).

pa(pn(I)). The conditional log-likelihood is then written:

L =
∑

n

Pr(lpn(I)|lpn(1...I−1))

=
∑

n

log
∑

t

αt

∏

i

θqt(i),lps(i)
−

∑

n

log
∑

t

αt

∏

i⋆

θq⋆
t (i⋆),lp⋆

s (i⋆)
(10)

We reparameterize α and θ by a and b where α =
softmax[a] and θt = softmax[bt] to ensure that the mix-

ture weights and multinomial parameters sum to one. Then

we calculate gradients with respect to a and b and perform

unconstrained optimization.

2.2.2 Inference

As for the EMoM model, we treat the prior as a compo-

nent in a CRF framework (see Equation 6 and Figure 5a).

Inference proceeds by sampling from Pr(l|x, e), and esti-

mating the maximum posterior marginals (MPM) at each

site s. Samples are easily drawn from the directed model

with ancestral sampling across all sites s = 1...S, where:

Pr(ls = k|xs, lpa(s), e)

= 1
Zs

Prun(ls = k|xs)
λ · Prpr(ls = k|lpa(s))

= 1
Zs

ψλ
sk ·

∑
t

αt

∏
i
θqt(i),lps(i)∑

t
αt

∏
i⋆ θq⋆

t
(i⋆),lp⋆

s (i⋆)

(11)

2.3. Epitome Tree

The conditional epitome does model the entire label

field, but unfortunately the learning algorithm relies on

straightforward optimization and is hence inefficient and

prone to local minima. To resolve this problem we inves-

tigate a third model inspired by the Tree Structured Belief
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Network prior (TSBN) [4]. In this model, a quad-tree is

used to define a prior over labels, where each group of four

pixel sites at level L are dependent on a common parent at

level L − 1, and groups of 4 sites at this level are in turn

dependent on a common parent at level L − 2 (see Figure

6 for the 1-d case). The model is completed by defining a

prior over the labels at level 0.

In the TSBN, each level takes the same set of K labels,

where K represents the number of classes at level L. The

relationship between parent and child is the same as that

between hidden and observed variables in a mixture model.

The epitome tree (or ETSBN) directly substitutes epitomes

for these mixtures and learns a separate epitome for each

level in the tree. We note however an important difference

to the TSBN: In the epitome tree, labels at each level are

not from a common set. The epitome at level L represents

a distribution across patches of class labels as before, but

the epitome at level L − 1 represents a distribution over

groupings of patches at level L, using the patch indices as

the labels (see Figure 6).

We thus extend our notation to incorporate level indices.

We denote the parameters of the epitomes at each level by

θj , j ∈ {0...L}. The prior at the top of the tree is rep-

resented as θ0 rather than α. θL is an epitome over the

class indices, and hence is indexed by θL
tk, t ∈ {1...T}, k ∈

{1...K}. The remaining θj=1...L−1 are epitomes over patch

indices, and hence are indexed by θ
j
t1t2

, t1, t2 ∈ {1...T}
(assuming the same number of epitome sites at all levels),

while the prior θ0 is indexed only as θ0
t . We also need to

extend the sites in the image domain over all levels s
j , and

to define a network of parent child relationships on the sites

via ∀s1 ∈ s
j , ∃s2 ∈ s

j−1 s.t. pa(s1) = s2. Patches are

also defined over each level, giving pj
n ∈ s

j , and associated

labels are written lpl
j
(i).

The joint distribution over a particular arrangement of

labels in the tree is:

Pr(l) = θ0
l
s0

∏

j=1...L

∏

s∈sj

θ
j
lpa(s),ls

(12)

The probability of a label map at level L is found by sum-

ming over all possible label configurations at higher levels.

2.3.1 Training

We assume the training data consists of 1...N training label

maps l
n
train. For each training example we will have an as-

sociated tree of labels l
nj , built across sites s

j , j ∈ {1...L}.

The labels at level L are set to the observed label maps,

hence l
nL = l

n
train. We aim to estimate tree parameters θ

based on the observed labels, while marginalizing over the

hidden labels higher in the tree. This is accomplished us-

ing a combination of EM and belief propagation (BP). In

the E-step, a message passing scheme is used to calculate

the expected values of the hidden variables given the cur-

rent estimates of θ. In the M-Step we then update θ using

the expected transition frequencies between labels.

In the E-step, for each training example we run an up-

ward and downward message-pass, denoting the respective

messages as µ1 and µ2. In the former, messages at level L

are initialized to µ1
s(k) = 1 if l

L = k, and to 0 otherwise.

We pass messages from levels j = L − 1...0:

µ1
s(t) =

∏

i

∑

k

θ
j+1
qt(i),k

· µ1
chi(s),k

(13)

where s ∈ sj , and k ∈ {1...K} if j = L − 1, and

k ∈ {1...T} otherwise. The function chi(s) returns the i’th

child of site s. In the downward pass, we initialize µ2
s0 to

θ0, i.e. the prior across the tree. Messages are then passed

from levels j = 1...L:

µ2
s(k) =

∑

t

µ2
pa(s)(t)·θ

j

qt(is),k·
∏

isib(s)

∑

k′

θ
j

qt(i),k′ ·µ
1
sibi(s),k′

(14)

where again s ∈ sj , and k ∈ {1...K} if j = L − 1, and

k ∈ {1...T} otherwise. The function sibi(s) returns the

i’th sibling of site s, and is denotes s’s patch relative index.

The M-step then updates the parameters based on the ex-

pectations of the transition frequencies:

θ
j
tk =

∑
n

∑
s∈s

j Pr(lnpa(s)=t′ s.t. φt′ (is)=t,lns =k|lLn,θ)∑
n

∑
s∈s

j

∑
k′ Pr(ln

pa(s)
=t′ s.t. φt′ (is)=t,lns =k′|lLn,θ)

(15)

where φ is defined as in section 2.1.1. These can be calcu-

lated from the messages of the E-step by:

Pr(ls = k, lpa(s) = t|lL, θ) = (16)

µ1
s(k) · µ2

pa(s)(t) · θ
j
t,k ·

∏
isib(s)

∑
k′ θ

j

qt(i),k′ · µ
1
sibi(s),k′

2.3.2 Inference

In inference we again embed the epitome tree prior within a

CRF of the form given in Equation 6 (see Figure 6). Given

a test image, x, we then use BP to estimate the maximum

posterior marginals of the labels at each site, Pr(ls = k|x),
k = 1...K. The upward message pass is initialized from the

outputs of the unary classifier, by letting:

µ1
s(k) = ψλ

s,k ∀s ∈ s
L (17)

Message passing proceeds as in the training E-step and the

required marginals are evaluated by setting:

Pr(ls = k|x) =
µ1

s(k) · µ2
s(k)∑

k′ µ1
s(k

′) · µ2
s(k

′)
∀s ∈ s

L (18)
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Figure 7. Handwritten digits results. a-b) MoM and EMoM models learned during training, showing argmax
k
{θk} for each mixture

component/epitome location. c-d) Pixel noise and occluding bars test images (NB bars are shown in gray here, but during testing are set to

black) . e-f) EMoM results. g-h) ETSBN results. Notice the improvement from e-g, and f-h (while the occlusions in h are all spotted in f,

extra noise is added in f; the points of interest are highlighted in boxes). i) Results across noise levels for pixel noise, and (j) for occluding

bars: The EMoM out-performs the MoM throughout, but the MRF cannot denoise the occluded bars due to its locality assumption.

3. Denoising Handwritten Digits

Having defined several models, we first test them here

in a binary context on denoising, and then in section 4 on

multi-class segmentation. For denoising, we formed binary

images of handwritten digits by copying thresholded images

from the MNIST database (see [11]) to random positions in

a 100 × 100 image. We created 60 such images for train-

ing, and 40 for testing. For test data, we add two types of

noise: pixel noise, in which a proportion of the pixels are

reversed, and occluding bars, in which 2 pixel wide hori-

zontal and vertical stripes are set to background pixels. We

investigated flipping 5%, 10% and 15% of the pixels.

We let l and x take binary values representing the true

image and the noisy observed image respectively. Since we

know the noise model, we have an exact description of the

unary term Pr(l|x). We learned priors using each of the

methods described in section 2 combined with mixture and

epitome models for comparison. A range of parameter set-

tings were tried, and the best results for each model are re-

ported. Patch sizes between 2 × 2 and 10 × 10 were used,

epitome sizes between 4 × 4 and 50 × 50, and values of λ

between 0.01 and 5 (see Equation 6). Mixture models were

learned with comparable numbers of parameters to ensure

direct comparison. All models were tested at the 0.1 noise

level for both kinds of noise, while the MoM and EMoM

models were compared across all noise levels. In addition,

a Markov Random Field model (MRF) with a single cost k

for different labels at neighboring sites was tested across all

conditions (setting k between 0.01 and 5).

3.1. Results and Discussion

Figures 7a and b show the MoM mixture components

and EMoM learned during training. We observe both to in-

clude characteristic line-segments from the digits data. Fig-

ures 7c and d give example test images with pixel noise

and occluding bars added respectively. Figures 7e and f

then show the EMoM results on these images, and 7g and h

the ETSBN results (with highlights to show the alterations

Pixel Noise (% correct) Occluding Bars (F-values)

MoM CMoM TSBN MoM CMoM TSBN

Mixture 95.5% 95.8% 97.0% 0.967 0.944 0.949

Epitome 96.8% 96.5% 98.5% 0.973 0.973 0.977

Table 1. Results for denoising handwritten digits across models.

The epitomized models consistently outperform the mixture mod-

els, with the epitome tree (ETSBN) performing best overall.

made). In both cases, we can see the improvements af-

forded by the ETSBN over the EMoM. This is borne out

quantitatively in Table 1 for the 0.1 noise level. For the

pixel noise, we use the percentage of correctly labeled pix-

els as the measure. For the occluding bars we use an F-

measure 1 as the small magnitudes of change prevent mean-

ingful comparison of percentages. The results show two

things. First, for each type of prior the epitomized version

outperforms the mixture model. Secondly, the overlapping

of patches in the CMoM/ECMoM and longer range connec-

tions in the TSBN/ETSBN tend to improve results over the

MoM/EMoM, with the tree models performing best.

Figures 7i and j show the performance of the MoM and

EMoM models across all noise levels, where we see the

epitome model offers a consistent improvement over the

mixture. The MRF model outperforms all models on the

pixel noise (7i), but cannot perform the occluding bars task,

as the 2-pixel gaps exceed its neighborhood model (it adds

no foreground pixels for any setting of k, hence giving an

undefined F-value). The mixture and epitome models how-

ever give a similar pattern of performance to the pixel noise,

suggesting they have a larger notion of shape (7j).

4. Multi-class Scene Segmentation

We used the Corel and Sowerby databases (see [6, 15]) to

test our models on multi-class segmentation. We created a

1F = (1 + β2)RP/(β2P + R), where R = TP/(TP + FN) and

P = TP/(TP + FP ). We set β = 0.1 and normalize the true positives

and false negatives by the number of pixels in the ground truth positive

class, and the false positives by those in the ground truth negative class.
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random train/test split of 60/40 images for Corel, and 70/34

for Sowerby. We used the training data to train both a unary

classifier (Textonboost, see [15]) and priors separately. For

speed, we chose to first over-segment all images, and learn

priors across the ‘superpixels’ thus formed. We use the ap-

proach of Moore et al. [12] for this purpose, which returns

a regular grid of 20 × 20 superpixels. These are treated ex-

actly as if they were pixels.

We used patch size 5 × 5, epitome size 25 × 25, and

25 mixture components across all models. Values of λ be-

tween 0.1 and 10 were tried, with results reported using the

best values for each model (on Corel, TSBN λ = 0.5, other

models λ = 2, on Sowerby, all models λ = 5). For the

CMoM and ECMoM, we rotated the training set by 0o, 90o,

180o and 270o, and learned a prior at each orientation. We

perform inference by using each prior in turn, and using

the maximum posterior marginal (MPM) labels at each site.

For the TSBN, we learned overlapping trees with 4 levels at

each corner of the image (with 16×16 sites in each). Again,

inference uses each prior in turn, and MPM labels are cho-

sen in the overlapping regions. For the ETSBN we adopt a

simple 2-level tree structure, with 5 × 5 patches and a full

epitome at level 2, and 25×25 patches and a 25 component

mixture model at level 1. We initialized the multinomial

parameters in the MoM and EMoM models by adding ran-

dom noise vectors to the overall frequencies of the labels

across the training data. The CMoM, ECMoM and ETSBN

models were initialized using the MoM and EMoM models

already learned, and the TSBN model used sub-sampling to

estimate transition frequencies between levels as in [4].

We clustered the training set ground-truth label maps by

fitting a further mixture of multinomials directly to their his-

tograms, and learned a separate prior per model for each

cluster (see He et al. [7] for a similar approach). During

testing, the initial classifier output was then assigned to a

cluster by its histogram, and inference proceeded according

to the relevant prior. We also imposed a ‘spatial constraint’

on all epitome models, where the prior α is weighted by a

2-d Gaussian whose center varies with position in the image

(encouraging, for instance, patches at the top of an image to

be taken from the top of the epitome). Because of the reduc-

tion in patch choice which therefore results, we expand the

epitome to include 3 ‘layers’, all of identical size and with

the same spatial constraints. Patches can therefore come

from the corresponding region in any one of these layers.

We test the EMoM both with and without these constraints.

For inference, we used an iterative approach which al-

ternates between using an epitome/mixture model at the

superpixel level, and a ‘grab-cut’ refinement at the pixel

level (based on per-image class color models and a context-

sensitive edge term, see [14, 15]). We add a refinement to

the grab-cut step, by weighting the unary cost for a given

label by its Mahalanobis distance from the center of all su-

Figure 8. Example epitomes learned on the Corel dataset. The

most probable class, argmax
k
{θtk}, is plotted at each epitome

site t. a-c) show 3 basic EMoM models, each learned on a differ-

ent subset of the data. The subsets were formed through clustering

so that each includes a restricted number of object classes. d-f)

show models for the same clusters where the epitome has been en-

larged to 3 ‘layers’, and spatial constraints have been added. Now,

patches in the center of an image are more likely to be taken from

the center of any one of these layers etc (via a movable 2-d Gaus-

sian weighting). These constraints are shown with: d) EMoM, e)

Conditional Epitome (ECMoM) and f) Epitome Tree at level L

(ETSBN). Note particularly the more disparate nature of e where

only the conditional of the central pixel in each patch is modeled.

Corel Sowerby

MoM CMoM TSBN MoM CMoM TSBN

Mixture 73.50% 73.65% 74.04% 83.23% 83.64% 83.58%

Epitome 74.07% 74.49% 75.04% 83.79% 83.98% 84.13%

Table 2. Performance of models on the Corel and Sowerby

databases in terms of pixels correctly classified. The epitomized

models outperform the mixture models on both databases, and the

epitome tree (ETSBN) performs best overall.

perpixels with the same label. Experimentally, we found 3

iterations of superpixel/pixel inference to be sufficient for

convergence. Finally, we also implement a smoothing CRF

prior at the superpixel level to compare with our models.

This has a single parameter k to penalize different neigh-

boring labels (setting k = 1 gave the best performance).

4.1. Results and Discussion

Training times were 3, 15 and 25 minutes per EM iter-

ation for the EMoM, ECMoM and ETSBN models respec-

tively (we used 3 iterations), and 10s, 20s, 60s per image for

testing (mixture model times were shorter, but comparable).

Figure 8 shows examples of some of the epitomes learnt

from the Corel dataset. Epitomes for different clusters, with

and without spatial constraints, and EMoM ECMoM and

ETSBN models are shown, giving a qualitative impression

of the different types of information captured. Figure 9

then compares the results for EMoM, ECMoM and ETSBN
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Figure 9. Comparing the segmentation of a single image from

Corel by the three epitome models. a) The original image in super-

pixels. b) The ground truth. c) The initial per-pixel classification

result. d-f) The result of inference at the superpixel level using

the EMoM, ECMoM and ETSBN models respectively. g-i) The

final results, enhancing d-f iteratively in combination with grab-

cut. Notice how the ECMoM smoothes out the sky, but gets all the

trees, while the ETSBN finds the extra portion of sky.

models on a single test image, showing the ability of the

ECMoM and ETSBN to capture larger-scale dependencies.

Table 2 compares the performance of all models on both

databases. As in section 3, we see that the epitomized mod-

els offer a performance gain over the mixture models. We

also see that the CMoM/TSBN and ECMoM/ETSBN per-

form better than the MoM and EMoM respectively, reflect-

ing the fact that they can take advantage of larger-scale de-

pendencies. The ETSBN gives the best performance here,

as it did on the handwritten digits, possibly because, unlike

the ECMoM, it more effectively models minority classes

(see Figure 9h and i). The EMoM that was tested without

the spatial constraints performed at 73.85% on Corel and

83.71% on Sowerby, giving lower performance than the re-

sults with spatial constraints (see Table 2) as expected. All

models outperformed the superpixel smoothing CRF, which

gave 72.99% on Corel and 83.13% on Sowerby, and the ini-

tial classifier gave respectively 69.73% and 79.54%.

In comparing with the state of the art, we note that since

training and test sets are not fixed on these databases, dif-

ferences in results should be treated with some caution. Our

result of 75.04% on Corel compares favorably with Shotton

et al. [15], who report 74.6% for their full model. Although

they report 88.6% for their full model on Sowerby, initial

classification is at 85.6%, so the gain of 4.59% produced by

our best prior is slightly better. He et al. [6] report 80.0%
on Corel and 89.5% on Sowerby, while Feng et al. report

90.68% on Sowerby. We point out that, while 5-6% higher

than us, He et al’s prior is undirected and must use sam-

pling in both training and inference. Further, Feng et al’s

approach combines a TSBN prior with a neural-network

classifier, indicating that the ETSBN prior might perform

around this level given the same initial conditions.

5. Summary

We have developed three models, the Epitomized Mix-

ture of Multinomials (EMoM), Conditional Epitome (EC-

MoM) and Epitome Tree (ETSBN), which demonstrate the

epitome can be used as an effective prior for image labeling.

The ETSBN has been shown to perform best in a range of

circumstances, and we put forward this model in particular

as an alternative to undirected models, with reduced com-

putational requirements and similar representational ability.

Future directions include applications to other tasks, epito-

mization of other models and incorporating features such as

rotation and scale invariance into the current models.
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