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Abstract

We present a novel framework for recognizing repetitive
sequential events performed by human actors with strong
temporal dependencies and potential parallel overlap. Our
solution incorporates sub-event (or primitive) detectors and
a spatiotemporal model for sequential event changes. We
develop an effective and efficient method to integrate prim-
itives into a set of sequential events where strong temporal
constraints are imposed on the ordering of the primitives.
In particular, the combination process is approached as an
optimization problem. A specialized Viterbi algorithm is de-
signed to learn and infer the target sequential events and
handle the event overlap simultaneously. To demonstrate
the effectiveness of the proposed framework, we report de-
tailed quantitative analysis on a large set of cashier check-
out activities in a retail store.

1. Introduction
In this paper, we consider the problem of recognizing

repetitive sequential human activities. Such activities are

composed of repeated events, each of which is a combi-

nation of sub-actions (primitives) with certain spatial and

temporal constraints. These activities are often observed in

workplaces where repeated tasks need to be performed, in

which each task consists of a specific set of ordered steps.

For instance, in a grocery store, a characteristic sequential

action performed by a cashier includes obtaining an item

from the lead-in belt, presenting the item to the barcode

scanner for pricing and depositing the item onto the take-

away belt for bagging (Figure 1). Other real-life examples

include product assembly in manufacturing, tailgating and

pass check at airports (borders, toll stations or theme parks),

just to name a few.

Effective analysis of repetitive sequential activities has

broad applications in many contexts, such as workplace

safety, fraud detection and product quality assurance. In

the example above, fraud happens when the cashier passes

an item through the check-out lane without actually regis-

tering it in the purchase list. These actions are called fake

scans and are referred as sweethearting by retailers. The

(a) (b) (c)

Figure 1. An example visual scan in a retail check-out station, in-

cluding (a) picking-up, (b) scanning and (c) depositing the item.

Visual scan overlap is demonstrated in (a) and (b). Note: Best

viewed in color.

term comes from the fact that this type of fraud is performed

by cashiers and customers who know each other and act in

collusion to obtain free merchandise. Sweethearting ranks

as one of the most serious problems in the retail industry and

causes significant revenue shrinkage with billions of dollars

worldwide. We adopt this retail scenario as the embodi-

ment of our proposed framework and use it to demonstrate

the effectiveness of our method for solving this real-world

problem.

As outlined above, repetitive sequential events exhibit a

number of unique characteristics that are distinctive from

other types of repeated human actions, such as walking

and reading a book. First, in repetitive sequential events,

there are strong spatiotemporal constraints imposed on the

primitives; the actor typically operates within a relatively

confined region and must perform the action quickly. In

other types of repetitive actions, such constraints are often

loosely enforced. For example, book reading involves re-

peated page flipping with random actions in between that

do not have strong associations. Second, the problem ad-

dressed in this paper may involve temporal overlap (e.g., a

cashier scans an item while at the same time picking an-

other item up (See Fig. 1c). Such overlap is not possible in

other activities, such as walking, where each action must be

completed before the next one begins, and thus poses much

greater challenges.

We propose a generative framework for recognizing

repetitive sequential events, which have strong temporal de-

pendencies and potential parallel overlap, as illustrated in

the example above. Our solution combines primitive de-
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tectors with a spatiotemporal model for sequential event

changes. We consider the recognition task as a process of

selecting a set of target sequential events from a large pool

of candidates formed by the primitives detected. The selec-

tion process is then formulated as an optimization problem

where the temporal and spatial constraints between primi-

tives are leveraged. In particular we design a novel Viterbi-

like algorithm that can effectively finds an optimal set of

sequential events close to the genuine events. The issue of

overlap is resolved in the optimization by only searching

disjoint sequential events without overlap in the state space.

As seen later, this constrained search not only distinguishes

our approach from traditional HMMs, but also dramatically

reduces the complexity of activity modeling, making the

problem tractable. We further apply our proposed frame-

work to recognize the predominant retail cashier activity

at the checkout station. We present details on how we

model cashier activity in a spatio-temporal way. Finally,

we demonstrate the effectiveness of our approach on a large

data set captured from a real grocery store including hun-

dreds of transactions and thousands of scanned items.

The paper is organized as follows. In Section 2, we

present a literature review on some existing work on human

activity recognition; The proposed general repetitive se-

quential event detection framework is then detailed in Sec-

tion 3; In Section 4, an application of the proposed frame-

work is demonstrated in the form of an embodiment of rec-

ognizing cashier scan actions in a retail environment; Ex-

perimental results and performance analysis are presented

in Section 5; Finally, Section 6 concludes our work.

2. Related Work
Human activity recognition is a long-studied problem in

the field of computer vision. It is obviously impossible to

list all existing work, but there are some good literature

surveys on this topic, such as the paper by Turaga et.al.,

[11]. Since human activities are highly spatial and tem-

porally structured entities, a large portion of the existing

approaches are based on graphical models, such as Finite

State Machines (FSM), Hidden Markov Models (HMM),

Context-Free Grammar (CFG) and Dynamic Bayesian Net-

works (DBN). Mahajan et.al., [5] have proposed a model of

multi-layered FSMs, which is built on top of spatiotempo-

ral video features and primitive object detection output. The

Hidden Markov-Models and its variations are very popular

approaches to activity recognition. One representative work

is by Hongeng and Nevatia [3]. In their system, a semi-

hidden Markov model is constructed by using the shape and

motion features of tracked objects. Laxton et.al., [4] pro-

posed a Dynamic Bayesian Network (DBN) structure which

incorporates partially ordered sub-actions, a hierarchical ac-

tion representation for building complex actions and an ap-

proximate Viterbi inference algorithm.

Since most graphical models are only assumed to handle

sequential events, they are not capable of capturing activ-

ities with parallel actions. To address this problem, sev-

eral contributions have been developed. Pinhanez [7] pro-

posed one of the first works in modeling events with dura-

tions by incorporating Allen’s interval algebra. Shi et.al.,

[9] proposed Propagation Networks (P-Nets), which model

sequential activities with concurrent primitives. Different

from many graphical models where primitives are consid-

ered instantaneous, primitives in these methods are assumed

to have temporal durations such that interval logic can be

applied.

In addition to the above mentioned graphical models,

other state-based approaches have also been developed. Fil-

ipovyh and Ribeiro [2] presented a probabilistic model to

capture human-object primitive interactions. In their frame-

work, both static and dynamic appearances of the actor and

the target object are encoded in a joint distribution. The

intrinsic spatiotemporal configurations between actor and

objects are also modeled.

Other approaches have also been pursued. Rao et.al. [8]

presented a rank theory for matching trajectories. Activ-

ity trajectories are matched by analyzing the rank of their

observation matrix. Boiman and Irani [1] have applied the

spatiotemporal interest-point descriptor to detect irregular

activities by comparing each descriptor with its neighbors

in the spatiotemporal dimensions. Wong et.al., [12] have

extended the probabilistic latent semantic analysis (pLSA)

model to incorporate both visual parts and the structural

information between visual parts to classify activities in

videos. The major limitation here is that descriptor-based

methods are not able to either capture the temporal order of

the events or handle overlapping scenarios.

3. General Framework
As explained in the introduction, repetitive human ac-

tions are often observed in scenarios like retail checkout

stations and factory assembly lines. Such human activity

can be considered as a set of repeated sequential events

(or visual work units), each of which is composed of a se-

quence of relatively isolated and separable primitives with

strong spatiotemporal constraints. While a strict ordering is

demanded between primitives, two consecutive work units
may overlap to an arbitrary degree. This overlap comes as

a natural byproduct of the rapid and repetitive nature of the

activity.

In this section, we present a generative approach for

grouping primitives into a set of repeated sequential events

of interest. We are especially interested in addressing the

issue of overlap. We first group the primitives into a large

set of valid candidates for the sequential event of interest.

By doing so, the overlap problem is resolved by consider-

ing the temporal orderings of the corresponding primitives
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in consecutive sequential events. We then propose a Viterbi-

like algorithm for selecting the most likely set of sequential

events from the large pool of candidates for representing the

data. In what follows, we assume that the primitives have

already been obtained from some low-level event detectors.

3.1. Sequential Event Representation

We first give a general graphical representation for a se-

quential event. Let ek
t be the k-th primitive in a sequential

event that occurs at time t. A sequential event S is defined

as a temporally ordered set of primitives {e1
t1 , e

2
t2 , . . . , e

n
tn
}

such that t1 < t2 < . . . < tn. For the purpose of clarity, we

sometimes omit the superscript k in the text.

The sequential event is represented as a graph. As il-

lustrated in Figure 2, a primitive eti
in a sequential event

S is associated with an appearance node vti that represents

the visual information, and a location node lti
that denotes

the spatial location of where the primitive occurs. The node

C is a spatial model that places spatial constraints on the

primitives. The primitives in a sequential event follow a

Markovian model, such that the probability of S under the

observation O = (v, l) is given by,

p(O|S) ∝ p(v|S)p(l|S)

= p(vt1 |et1)
n∏
2

p(vti
|eti

)p(eti
|eti−1)

n∏
1

p(lti
|eti

) (1)

where v = {vt1 , vt2 , . . . , vtn
} and l = {lt1 , lt2 , . . . , ltn

}
represent the visual cues and spatial information respec-

tively. Here, p(vti
|eti

) is the appearance likelihood model

for the primitive eti
while p(lti

|eti
) is a spatial likelihood

model for eti . Term p(eti |eti−1) is the transition probability

from primitive eti−1 to primitive eti
.

1
1t
e

C
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v
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l
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v
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Figure 2. A graphical representation of the sequential event with

n primitives. A primitive event node is associated with an appear-

ance node that represents visual information, and a location node

that indicates where the primitive occurs. The node C is a general

model that places spatial constraints on the primitive nodes.

3.2. Building Sequential Events

Assume there are n sets of primitives {E1, E2, . . . , En}
detected in a video sequence, where Em is a set of prim-

itives with a specific type m (e.g., all possible Pickups in

the cashier scenario). Thus, a candidate sequential event S
can be formed by selecting a primitive from each set with

temporal order. We consider all such candidates by enumer-

ating samples in {E1, E2, . . . , En}. In particular, we repre-

sent all the candidates starting from a primitive e1
ti
∈ E1 by

a tree rooted at e1
ti

, which we call a sequence tree denoted

by Tr(i, :). In such a tree, any node at the j-th level is only

selected from set Ej and all the children of the node occur

in later primitive sets. This way, each path from the root of

the tree to a leaf node corresponds to a candidate for a se-

quential event S. An example of such a sequence tree with

3 primitives is illustrated in Figure 3.

The number of sequential event candidates generated in

this way grows exponentially with the number of primi-

tives. To manage the size of the sequential event set in

practice, heuristics could be applied to reduce the number

of candidates dramatically. For instance, simple temporal

constraints like requiring that two consecutive events occur

within a specified time interval could prune out many im-

possible combinations.

Figure 3. A sequence tree representing some potential sequential

events with 3 primitives. {e1
t1 , e2

t2 , e3
t3 , e1

t4 , e2
t5 , e3

t6} is a set

of primitive events detected in a video sequence. All candidates

originate from primitive et1 .

3.3. Problem Formulation

The exhaustive combination scheme described above

yields a great number of candidate sequential events. How-

ever, the majority of these are spurious, especially when the

results of primitive detection are noisy. Our goal is to select

a small set of sequential events that best match the truth in

the data (see Figure 4(a)). We turn this selection process

into an optimization problem where the strong temporal de-

pendencies between primitive events and their spatial con-

straints are used to direct the optimization process.

A critical observation here is that although two se-

quential events may overlap, their corresponding primi-

tives should not. We define two sequential events S =
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{e1
t1 , e

2
t2 , · · · , em

tn
} and S′ = {e1

t′1
, e2

t′2
, · · · , em

t′n
} disjoint,

or denoted as S ∩ S′ = ∅, iff

ti < t′i, ∀i = 1 . . . n, (2)

Similarly, a set of sequential events S = {S1, S2, · · · , Sn}
is defined as disjoint if it satisifies:

∀Si, Sj ∈ S, Si ∩ Sj = ∅, i �= j (3)

Given the above definitions, the genuine sequential

events of interest in the video can be considered as a set of

disjoint repetitive actions. Thus, in the context of Bayesian

modeling, our task can be understood as identifying the

most likely disjoint subsequence within some kind of model

that best explains the observations emitted by the genuine

set of sequential events in the data. This is an optimization

problem and can be mathematically formulated as follows,

Let S = {S1, S2, · · · , Sn} be the set of sequential event
candidates ordered by time. Find a maximum disjoint
subsequence Ŝ within a model M(θ) such that

Ŝ = argmax
S̄∈D(S)

p(S̄|Ō,M(θ)) (4)

where D(S) is set of all possible disjoint subsequences
of S and Ō is the corresponding observation of S̄.

The optimization in Eqn.4 results in the maximized

throughput of the target subject who invokes the events,

which is encouraged in real-life scenarios (e.g., an em-

ployee who processes items fast tends to get rewarded).

Again, the repetitive sequential events are assumed to be

a Markovian process. Based on the Bayes rule, we obtain,

p(S̄|Ō,M(θ)) ∝ p(Ō|S̄,M(θ))p(S̄|M(θ))
= p(S1)p(O1|S1)

∏m
2 p(Oi|Si)p(Si|Si−1)

(5)

where m is the length of the event series S̄. p(Oi|Si) can

be further substituted by Eqn.1. p(Si|Si−1) is the transition

probability between Si and Si−1.

There is much analogy between our problem and one of

the problems considered by HMMs, which seeks an optimal

state sequence to best explain the observations. However, a

major difference here is that the optimization in our case

is conducted over a subspace with only disjoint event se-

quences. This dramatically reduce the modeling complex-

ity, making the optimization tractable. Also, the lengths of

subsequences are varied while all state sequences have a

fixed size in HMMs.

The selection of model M(θ) depends on the specific

problem under consideration. We will give a detailed ex-

ample in Section 4.

3.4. Model Inference & Learning

The optimization problem described above seems in-

tractable as the number of disjoint sequences grow expo-

nentially with the number of sequential event candidates.

However, it turns out that with some manipulation, a modi-

fied Viterbi algorithm can solve this problem efficiently.

We start by constructing a lower-triangular trellis with

each sequential event being a node, as shown in Figure 4(b).

The size of the trellis is n × l where n is the total number

of sequential event candidates and l is the number of first

primitives that correspond to the sequential event of interest.

The construction embodies two important considerations, a)

an event sequence is disjoint (lower-triangular) and b) the

sequence is no longer than the number of first primitives

detected (n columns). In addition, such a representation
provides a path for any disjoint event sequences of interest.

Primitive 1

Primitive 2

Primitive 3

(a) Event Combination

Tr(1,:)

Tr(2,:)

Tr(3,:)

Tr(4,:)

Tr(5,:)

(b) Trellis

Figure 4. (a) Given the primitive events detected, we are interested in

identifying a set of disjoint sequential events of interest that correspond to

the truth in the data. (b) A lower-triangular trellis can be formed by a set

of sequence trees {Tr(1, :), T r(2, :), . . . , T r(l, :)} where Tr(i, :) refers

to the candidates starting at the ith sample in the set of the first primitives.

The Viterbi algorithm can be used to find an optimal constrained path (blue

line) for a maximum set of disjoint sequence with maximum likelihood.

Each node has an observation score computed from the

model, and each two disjoint nodes in adjacent columns are

associated with a transition probability by the model. A

search for the optimal path is conducted in a similar way to

a regular Viterbi algorithm, but only constraint paths with

disjoint nodes are considered. Upon completion of the al-

gorithm, each node is either isolated (no path to it), or set

with the maximum likelihood resulting from an optimal se-

quence of events leading to that node. We locate the last
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column with unisolated nodes, and start from the node with

maximum likelihood in that column and backtrace the opti-

mal sequence of sequential events. Since a path to a node in

the jth column has a length of j, the path we’ve identified

above is the most likely maximum disjoint subsequence that

is pursued in Eq. 4.

Model learning is straightforward in our case as we can

entirely rely on the HMM framework. The major difference

is that we consider just part of the state space while a regular

HMM considers the entire space.

4. Cashier Activity Modeling
Cashier activity recognition has significant applications

in reducing retail shrink caused by employee-related fraud

such as sweethearting mentioned in Section 1. In this sec-

tion, we develop a spatio-temporal model based on the

framework proposed in 3 for recognizing the predominant

cashier activity in a retail context, which we term visual
scans. As shown in Figure 1, this sequential activity in-

cludes 3 distinctive actions (or primitives), i.e, pickup, scan
and drop, respectively. Our model integrates appearance

information, temporal information and geometric cues into

the framework discussed in Section 3.

4.1. Detecting Checkout-Related Primitives

We have developed an approach in [18] to detect the 3
primitive events of interest, i.e pickup, scan and drop in the

checkout region. The approach is composed of two major

parts: a motion-based event segmentation algorithm and an

event recognition model based on Multiple-Instance Learn-

ing (MIL). The segmentation algorithm is used to identify

segments in a video sequence as candidates for primitive

events, which are further verified by the event recognition

model. We briefly recap the fundamental ideas of the ap-

proach next.

The basic idea of the segmentation algorithm is to mon-

itor the motion change (obtained by frame differencing) in

a specific region of interest (ROI). Instead of thresholding

the motion sequence directly, we take advantage of the tem-

poral ordering of the primitives, which hints that there is

one pickup (and drop) between two consecutive scans. We

first use the motion peaks in the scan area as dividers to

pre-segment the pickup (and drop) motion sequence. For

each pre-segment between two scans, it is thresholded and

the resulted sub-segments are further assessed with regard

to duration, magnitude and motion patterns.

After segmenting the video sequence, we apply Space-

Time Interest Points (STIP)to recognize events with the Bag

of Features (BOF) model, similar to [16]. However, one

problem arises when it comes to defining an appropriate

ROI for the model due to the unoriented behaviors of the

cashier who may pick up (or place) products anywhere in

Figure 5. Multiple overlapped ROIs can address the location-sensitive is-

sues appearing in the unoriented interactions between the cashier’s hands

and the transaction area. We used 4, 1 and 6 ROIs in the lead-in belt, scan

and take-away belt areas respectively. For the purpose of illustration, the

ROIs shown here are not overlapped.

the transaction area. Our idea is to place multiple regions

to cover the entire transaction area so that each product

is guaranteed to be placed in one region (Figure 5). The

Multiple-Instance Learning (MIL) technique is adopted to

resolve the unknown correspondence issue between primi-

tives and their locations. More detail can be found in [18].

4.1.1 Temporal Models

Assuming that sequential events occur independently, the

waiting time between two events can be modeled with the

Erlang distribution,

f(t; k, λ) =
λktk−1e−λt

(k − 1)!
for t > 0 (6)

In our case, k = 1 as we are only interested in the time

gaps between consecutive visual scans. So p(Si|Si−1) in

Eq. 5 can be simplified as an exponential distribution,

p(Si|Si−1) = λse
−λst (7)

where t is the time gap between Si−1 and Si.

The temporal dependencies between primitives, i.e,

p(eti |eti−1) in Eq. 1 are also modeled by two separate ex-

ponential distributions λ1
e and λ2

e. Note that the primitives

of a visual scan follow each other closely, so λ1
e and λ2

e

tend to be much larger than λs in general.

4.1.2 Geometric Models

Actions invoked by the cashier are limited by the reach of

the cashier’s arm(s). Thus, knowing where the cashier is

during the occurrence of an event can help disambiguate

spurious events that do not make geometric sense. We build

a simple geometric model to capture the distance between

the cashier and the location of an event.

Let lti be the cashier’s location when an event eti is in-

voked in the kth ROI centered at rk. Then the probability
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of an event appearing at location P is written as,

p(lti
|eti

) ∝ N (xti
|μ, σ) (8)

where xti
= lti

rk, i.e, the distance between the cashier and

the location of the event. Note that the center of the ROI

is only a rough approximation of the event location. We

model pickup, scan and drop separately by using 3 Gaussian

distributions under the assumption of independence.

The cashier’s location is detected by background sub-

straction. Basically, an ellipse is fitted to the contour of the

largest blob obtained from background subtraction, and the

center of the ellipse is considered as the cashier’s location

(See Figure 6).

(a) Likely cashier hand reach (b) Unlikely cashier hand reach

Figure 6. The location of an event is limited within the reach of

the cashier’s arm. a) An likely reach and b) an unlikely reach. The

ellipses show the locations of the cashier detected by background

subtraction. The red boxes indicate where an event is invoked.

4.1.3 Learning Model Parameters

The set of parameters in the spatio-temporal model we have

presented above is {λs, λ
1
e, λ

2
e, {(μi, σi)|i = 1 . . . 3}}. One

big advantage of our approach over the others is that the

learning and inference schemes of HMMs can be applied di-

rectly to our case with small modifications. The well-known

Baum-Welch (i.e EM) algorithm used for learning HMMs

gives the expected number of transitions nij from the ith

state to jth state, and the expected number πi for the ith

state. According to Section 3.4, nij and πi are equivalent

to the expected number of sequential event Si followed by

Sj , and the expected number of Si observed, respectively.

However, we only consider constrained paths in our case.

Thus we update the temporal parameter λs in the M step

by,

λs =
1∑

i

∑
j δijnijtij/

∑
i

∑
j δijnij

(9)

where

δij =

{
0 if Si ∩ Sj = 0
1 otherwise

(10)

tij is the time gap between Si and Sj . λ1
e and λ2

e can be

updated in a similar way.

We update the spatial parameters as follows,

μj =
∑

i πj
i xj

i∑
i πj

i

σj =
∑

i πj(xj
i−μj)(x

j
i−μj)∑

i πj
i

j = 1. . . 3
(11)

where xj
i is the distance between the cashier and the jth

primitive event in the ith visual scan.

5. Experimental Results
5.1. Data & Evaluation Measures

We first evaluated our approach with a small data set (ST-
1) including 10 videos captured from a real grocery store.

The data involves 5 cashiers and each video corresponds to

a single transaction. The number of items in the transactions

varies from 6 to 29 with a mean of 10.7.

We further tested our approach by using a significantly

larger data set (ST-2) recently captured from a lane in an-

other grocery store. This data set includes transactions for

an entire day with a total of 396 transactions and 5485
scanned items. The corresponding transaction logs were

also recorded.

A large number of interventions on the part of the cus-

tomer and bagger and dramatic differences in cashier behav-

ior were observed in both data sets. There were also con-

siderable occlusions in ST-2 caused by the head and body

movement of the cashier.

For evaluation, we define the overlap percentage of a

primitive e1 and a prediction e2 as their intersection divided

by the union of the two events, i.e,

τ =
e1 ∩ e2

e1 ∪ e2
(12)

A primitive event may relate to multiple predictions. We

take the one with the maximum overlap percentage as the

correct match if the percentage exceeds some threshold τ .

All the others are considered as false positives. We counted

the false positives and false negatives for each video, and

computed the precision (p), recall (r) and F-measure (f =
2∗p∗r/(p+r)), accordingly. We set τ = 0.2 for evaluating

the results of the primitive detection.

For visual scans, a prediction is considered as correct

only if all three of its primitives are successfully matched in

the ground truth.

5.2. Evaluation Results on ST-1

We manually annotated the ground truth (start and end

time) for each primitive in ST-1. The annotations were used

to generate the ground truth for visual scans automatically

by the combination algorithm discussed in Section 3.

We generated 10 data sets by permuting the 10 videos

randomly. For each data set, 6 videos were used for training
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Primitive Alg. Precision Recall F-measure

Pickup
ONE-R (70) 0.90 ± 0.06 0.91 ± 0.04 0.91 ± 0.03
MIL-R(180) 0.84 ± 0.07 0.92 ± 0.03 0.88 ± 0.05

Scan ONE-R (30) 0.91 ± 0.07 0.93 ± 0.05 0.92 ± 0.02

Drop
ONE-R (50) 0.81 ± 0.04 0.81 ± 0.05 0.81 ± 0.04
MIL-R (160) 0.80 ± 0.03 0.87 ± 0.05 0.83 ± 0.02

Table 1. The best results (mean±variance) of using one ROI for

each primitive (ONE-R) and multiple regions (MIL-R), achieved

by the number of visual words indicated in the parenthesis.

and the remaining 4 for testing. The results reported below

were all averaged on the 10 data sets.

5.2.1 Primitive Detection

STIP features contain both edge information (HOG: His-

togram of Oriented edges) and motion information (HOF:

histogram of optical flow). Our previous experiments show

that HOF outperforms HOG and the combination of both

only leads to a slight performance improvement, largely due

to the frequent and large background changes in the check-

out area. Thus, we only reported the results based on HOF.

We placed 4, 1 and 6 ROIs in the customer lead-in belt,

scan and the take-away belt areas respectively (See Fig-

ure 6). The ROIs are overlapped to cover the items placed

on the boundaries of the ROIs. We didn’t specifically tune

the size of the ROIs, but ensured that they were large enough

to capture the movement of the cashier’s arm.

We compared the results of using one ROI for each prim-

itive (ONE-R) and the MIL approach (MIL-R). In the case

of applying one ROI only, we carefully tuned its position

to avoid distractions from the bagging person as much as

possible. As shown in Table 1, MIL-R demonstrates better

recall than ONE-R, especially for the drop event in the take-

away belt area where cashiers present more unoriented be-

haviors when placing products onto the belt. ONE-R yields

higher precision, but this was achieved by particularly tun-

ing the ROI to reduce the effect of the bagging activity.

5.2.2 Visual Scan Detection

We consider our combination algorithm using visual in-

formation only as the BASE algorithm, and incrementally

add other information to the algorithm, including the loca-

tion information of the cashier (LOC), temporal informa-

tion (TEMP), and the combination of both (LOC+TEMP).

The combination results of visual scan detection given in

Table 2 were generated using the best primitive detection

results reported in Table 1, from both ONE-R and MIL-

R respectively. The geometric modeling is less meaning-

ful in the case of a single ROI so no results were given

on that. The temporal information significantly improves

the disambiguating ability of the model and boosts perfor-

mance by as much as 15%. The spatial information results

Input Alg. Precision Recall F-measure

ONE-R
BASE 0.63 ± 0.07 0.54 ± 0.08 0.58 ± 0.08
TEMP 0.78 ± 0.08 0.67 ± 0.08 0.72 ± 0.08

MIL-R

BASE 0.69 ± 0.08 0.63 ± 0.08 0.66 ± 0.08
LOC 0.73 ± 0.06 0.68 ± 0.09 0.70 ± 0.08

TEMP 0.83 ± 0.05 0.76 ± 0.07 0.80 ± 0.06
LOC+TEMP 0.83 ± 0.06 0.77 ± 0.06 0.80 ± 0.06

Table 2. The recognition results of visual scans using vi-

sual (BASE), temporal (TEMP) information and geometric cues

(LOC).

Figure 7. The Performance of primitive combination varies with

the probability threshold τ for the primitives, which determines

the number of primitives participating in the combination. A larger

τ yields better precision and worse recall, and a lower F-measure

overall. (Best viewed in color)

in a mediocre improvement. However, when combining it

with temporal information, it does not yield better perfor-

mance as expected. This is largely attributed to the cashier

locator discussed in Section 4.1.2, which gave poor track-

ing of the cashier in a few videos due to distractions from

the chair (which does not appear in the reference image) in

the transaction area. In addition, the distinctive behavior

differences between cashiers require a more sophisticated

geometric model to capture the spatial constraints imposed

by the cashier.

The most important parameter in our algorithm is the

probability threshold τ set for the primitives, which deter-

mines the number of primitives considered in the combina-

tion. This threshold is not only directly related to the com-

plexity of the algorithm. but also has direct impact on the

performance. As shown in Figure 7, A larger τ yields bet-

ter precision and worse recall, and a lower F-measure over-

all. The best results, shown in Table 2 were observed when

τ = 0.1.

5.3. Evaluation Results on ST-2

Due to the unaffordably high cost of detecting STIP fea-

tures, it is impractical to take the event recognition approach

discussed in Section 4 to evaluate a large data set like ST-2
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(a) Recall Comparison

(b) Precision Comparison

Figure 8. Precision and recall achieved by our approach and a

finite-state-machine model on the large data set. The results were

averaged over all the transactions within half an hour.

(over 12-hour length of video). We therefore applied an ef-

ficient ”push button” technique that has been implemented

in our system to detect primitives in ST-2. This technique

considers the pickup or drop event as a button-pushing-like

action, recognizing these actions by identifying a focused

beam of motion energy characteristic of the extension and

retraction movement of cashiers arm with respect to a pre-

specified region [13]. Due to limited space, we skip the

details of this technique. A threshold-based motion detec-

tor was used to detect scan primitives.

The push-button method does not output the probability

of an event, so we simply considered temporal constraints

in our combination algorithm to detect visual scans in each

transaction. The detected visual scans were further aligned

to the transaction logs (TLOG) for evaluation in which a

visual scan is considered legitimate only if a transaction

record shows up during the scan. Figure 8 showed the re-

call and precision averaged over each half hour during the

data (only busy periods are shown here). Our algorithm

achieved over 70% accuracy in both precision and recall.

Given the complexity of the data, the results are promis-

ing. As a comparison, we showed the results of a finite-

state-machine model implemented in our system, which de-

tects visual scans by considering temporal constraints lo-

cally. Our approach demonstrated clear advantage over the

FSM model, which yielded less than half of the perfor-

mance achieved by our algorithm.

6. Conclusions

We have presented a generative framework for detect-

ing repetitive sequential events with strongtemporal depen-

dencies and potential overlaps. We further demonstrated its

effectiveness in a retail example where the predominant ac-

tivity of the cashier has been analyzed. Our approach has

been evaluated on a large data set captured from a real gro-

cery store. The results are encouraging given the various

real-world complications present in the data.

Our current work focuses on improving the cashier track-

ing and developing a more sophisticated geometric model

([14, 15]) to capture the varied behavior differences be-

tween cashiers. In such a way, we expect to enhance the

disambiguating ability of the spatio-temporal model we de-

velop in this paper.
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