
Real-time Vehicle Detection for Highway Driving

Ben Southall, Mayank Bansal and Jayan Eledath

Sarnoff Corporation

Princeton, NJ

{bsouthall,mbansal,jeledath}@sarnoff.com

Abstract

We present a new multi-stage algorithm for car and truck

detection from a moving vehicle. The algorithm performs a

search for pertinent features in three dimensions, guided by

a ground plane and lane boundary estimation sub-system,

and assembles these features into vehicle hypotheses. A

number of classifiers are applied to the hypotheses in order

to remove false detections. Quantitative analysis on real-

world test data show a detection rate of 99.4% and a false

positive rate of 1.77%; a result that compares favourably

with other systems in the literature.

1. Introduction

This paper presents a stereo vision based algorithm for

vehicle detection from a moving car. In particular, our al-

gorithm is focused on short-to-medium range (3 to 40 me-

ter) vehicle detection and tracking for the purpose of low

speed automated cruise control (ACC) and stop and go ve-

hicle control in moderate to heavy traffic. There are many

algorithms in the literature for vehicle detection and track-

ing from a moving platform; a full treatment of the back-

ground can be found in a recent survey by Sun et al. [16].

Our system follows the typical design described by Sun and

co-authors, with a hypothesis generation step where the al-

gorithm locates regions of interest (ROI) in an image, fol-

lowed by a hypothesis verification step, where these ROI

are subject to further analysis to determine whether vehi-

cles are present or not. The main novelty of our system is

in the combination of its particular component algorithms;

this combination permits us not only to produce classifica-

tion outputs whose accuracy is greater than other systems

from the literature, but also to give range estimates to vehi-

cles ahead of the host car, with all of these results delivered

at a frame-rate of 16Hz.

In both monocular and stereo vision systems, image

edges are popular cues for hypothesis generation [15, 7, 13,

1, 8], with authors such as Bergmiller et al. [2], and Bertozzi

et al. [3] adding extra features such as symmetry or shadow

presence. Broggi et al. [4] use edge and symmetry features

in a multi-resolution framework. Other authors [14, 9] scan

the image with lightweight (or hardware optimized) SVM

classifiers to locate likely vehicle locations.

Franke and Kutzbach [8], use a set of filters to generate

a sparse set of edge points, estimate the disparity of those

points, and build a histogram of those disparities. The ve-

hicle detection proceeds on the principle that the rear faces

of vehicles are quite flat, and therefore should have con-

stant depth, and hence constant disparity. Given this fact,

the algorithm detects likely car regions by locating peaks in

the disparity histogram, finding the image features that con-

tributed to the peak, and then fitting rectangular ROI around

some subset of those features. Knoeppel et al. [10] use the

same technique, but with a different low-level feature ex-

traction procedure.

Hypothesis verification is a classification step, where hy-

potheses are sorted into vehicles and non-vehicles. Richter

et al. [12] attempt to form ’U’ shaped contours that would

describe the sides and bottom edge of a car in image regions

cued by a radar detector; the validity of detections is deter-

mined by properties of the fitted contour. Song et al. [13]

use an AdaBoost classifier [17] trained on Haar features to

classify detections. Broggi et al. [4] eliminate bounding

boxes that have either dimensions or locations in the im-

age that are unlikely to describe vehicles. Alonso et al. [1]

use a trained nearest neighbour approach to separate vehi-

cles from non-vehicles based upon features such as image

corners, symmetry and shadow presence. Song et al. [15]

test both neural network and support vector machine classi-

fiers with Gabor and wavelet features as inputs. Franke and

Kutzbach make use of a ground plane detection scheme to

remove those hypotheses that largely contain image features

that lie on the road surface.

There are quantitative results for a number of the algo-

rithms that use trained classifiers in the hypothesis verifica-

tion stage, and a summary of those results are presented in

table 1 alongside ours, which compare favourably. Much

of the remaining literature in this area concentrates on de-

scription of algorithms, with algorithmic performance being

1

541978-1-4244-3991-1/09/$25.00 ©2009 IEEE



Authors TP rate FP rate Notes

Bergmiller et al. [2] 79.84%/83.12% 16.7% TP rates for cars/trucks

Sun et al. [15] 98.5% 2% For their most effective classifier

Alonso et al. [1] 92.63% 3.68%

Fu et al. [9] 87.6% - No FP rate given. TP rate an average over 10 sequences

Our results 99.37% 1.77% Also delivers vehicle range, 16Hz frame rate
Table 1. Exisiting results

assessed in a qualitative manner.

Our approach shares some broad principles with many of

the works discussed above, although our implementations

differ. For hypothesis generation we employ a stereo-based

detection scheme that exploits regions of constant disparity

[8], and we also use multi-resolution image processing [4].

As we will see below, the novelty of our hypothesis genera-

tion algorithm is in a multi-resolution search constrained by

so-called ‘detection gates’ that are guided by lane boundary

location and ground plane estimates generated by an auxil-

iary algorithm. Parts of our hypothesis verification scheme

utilize a trained classifier, bolstered by a set of simple pre-

classifiers that exploit expected features of our operating en-

vironment.

2. Approach

Given that the purpose of our detection and tracking sys-

tem is to provide data to a real-time control system, we de-

signed the algorithms with two requirements in mind. The

first is the real-time constraint; the algorithms must have

potential to run at frame rates of 10Hz or more on low-cost

automotive grade embedded computing hardware. The sec-

ond requirement is to minimize error rates. The driver ex-

pects an ACC system to react to the presence of vehicles in

the lane ahead; if the system misses vehicles, then it does

not provide any value to the driver and they will switch it

off. Conversely, frequent false positives (i.e. it falsely re-

ports a vehicle where non is present) will cause the car to

brake or accelerate in a disconcerting manner. In the worst

case, either of these errors could cause a safety hazard.

To satisfy the timing constraints, we designed the algo-

rithms such that the more computationally complex proce-

dures only occur on relatively small amounts of data, and

where we must process large amounts of data (e.g. in low-

level image processing for feature extraction), we use sim-

ple operations. To provide low error rates, we design our

processing chain such that at the lowest level we are un-

likely to miss necessary features for vehicle detection (and

thereby lower the risk of false negatives), and in later pro-

cessing we use multiple simple cues to reduce false detec-

tions.

The basic assumption of our stereo-based vehicle detec-

tion strategy is that of Franke and Kutzbach [8], where they

note that image features on the rear face of a vehicle ahead

Figure 1. Detection gates. Left: An overhead view showing a set of

N gates ahead of the vehicle, each of which covers an equal num-

ber D stereo disparities. Right: Red reticles show the detection

gates projected onto the image plane. Blue pixels show ground

plane points.

of the host will share a similar depth, and hence a similar

disparity value. Accordingly, our basic detection algorithm

searches for sets of image features that are clustered in dis-

parity space. To speed up computation and reduce the like-

lihood of errors, we focus our search for vehicles on a set of

so-called ‘detection gates’; each detection gate defines a 3D

volume on the roadway ahead of the vehicle, and individual

instances of our detection algorithm run separately in each

gate. A set of N detection gates are illustrated in the over-

head view on the left-hand side of figure 1. The width of

each gate is that of a typical US highway lane (3.6m), and

they are 1.8 m tall. The length of the each gate is specified

to equal a disparity of D pixels. Equal length in dispar-

ity space implies that the gates lengthen as they get further

from the host car; additionally, the gates overlap in the lon-

gitudinal direction (by 1 pixel of disparity).

In order to focus our search for vehicles on the surface of

the highway lane ahead of the host, we must also steer these

gates in response to two changes; pitching motion of the

host as it drives along the road, and the location of the lane

boundaries as the road curves, or as the host changes lanes.

To this end, our system incorporates a sparse stereo ground

plane location algorithm (based upon similar principles as

the work presented by Labayrade et al. [11]), coupled with

a lane boundary extraction procedure. On the right-hand

side of figure 1 we see an image from our system with some

graphical overlays. The red corner reticles show the projec-

tion of the front of each 3D detection gate onto the image

plane. The blue point features indicate those sparse points

that have been identified as lying on the ground plane; as

542



the vehicle pitches, the ground plane detection algorithm

allows us to move the detection gates up and down to match

the motion of the imaged ground plane. The 3D ground

plane points are further analyzed to extract lane boundary

poly-lines that in turn are used to steer the detection gates

laterally in the image in sympathy with the curvature of the

lane ahead of the host.

Finally, there is one more focus mechanism that we use

to increase the effectiveness of our processing; image scale.

Our detection algorithm searches for image features that de-

scribe the outer edges and significant inner structure of the

rear face of a vehicle. These features have a constant physi-

cal size in the world, but naturally change size in the image

as the observed vehicle moves relative to the camera. In

order to keep these physical features within a small range

of image scales, we use a Laplacian pyramid decomposi-

tion of our original image, with nearer gates using lower

resolution parts of the pyramid, and the most distant gates

using the original image resolution. This strategy allows us

to use a single set of filters for extracting image features

for vehicles at all ranges; this choice will ease the transi-

tion to DSP hardware that is optimized for single instruction

multiple data parallelism. A further feature of the multiple-

resolution algorithm is that it helps to preserve the ‘con-

stant disparity’ assumption for rear faces of vehicles over a

greater range. As the disparity resolution effectively drops

with image resolution for nearby vehicles, the amount of

disparity variation caused by rotations of these vehicles also

drops. For typical U.S. highways (curves of > 350m ra-

dius), we have found that the constant disparity assumption

is well preserved across the operating range of our system.

Once a vehicle has been found in one of the detection

gates, a tracker is initialized to estimate the trajectory of

the vehicle ahead; for our ACC application, we track only

the nearest vehicle in the lane of the host vehicle. A track

is terminated if the tracked vehicle moves out of the host’s

lane (or if the host performs a lane change), if the lead vehi-

cle moves out of the reliable working range of the system,

or if a new vehicle cuts in to the host’s lane at a distance

closer than the currently tracked vehicle (in which case the

cutting-in vehicle is tracked).

To summarize, our stereo-based vehicle detection

scheme operates multiple versions of the same basic algo-

rithm in a carefully guided set of physical neighbourhoods,

with input from a ground plane and lane boundary determi-

nation algorithm. We use a multi-scale approach to image

processing such that the image features that serve as input

to our algorithm are likely to correspond to the same phys-

ical features on a vehicle across the full operating range of

our system. In subsequent sections, we provide more details

of our algorithm’s components, our experimental procedure

and the results of those experiments.

Figure 2. Edge extraction. The left and right images are shown,

together with their detected edge pixels in green and red for the

left and right images respectively. The detail images give a closer

view, and the left image detail includes a detection gate ROI.

3. Algorithmic details

3.1. Vehicle detection

As noted above, our system runs several independent in-

stances of our vehicle detector on different parts of the road

ahead of the host vehicle. Below, we provide more details

on how the vehicle detection algorithm is structured. We

first address feature selection and range computation, then

vehicle candidate detection in a single detection gate, merg-

ing results from multiple detection gates, and finally outlier

rejection schemes to reduce false alarms.

3.1.1 Feature generation and range computation

Our detection algorithm attempts to locate regions of con-

stant disparity in each of the detection gates. To this end, we

generate vertical edge pixels using a standard vertical Sobel

edge filter, cluster those pixels into vertical edgels and then

compute the range to each edgel using standard stereo SAD

search techniques. As seen in the algorithm overview sec-

tion, our algorithm runs at multiple resolutions, with nearby

detection gates operating at coarse resolution, and the fur-

thest gates operating at the original image resolution. Each

gate covers a region of interest (ROI). To reduce compu-

tation, at each pyramid level we take a union of the ROIs

for the detection gates that operate on that level and only

compute edges and stereo inside the union ROI. To compen-

sate for varying light levels, we use an adaptive threshold-

ing scheme to determine which pixels belong to significant

edges. Algorithms 1 and 2 show the steps of the feature de-

tection and ranging process, and fig. 2 shows an example of

the edge extraction process.

3.1.2 Per-gate candidate selection

Now that we have a set of vertical clusters c at each im-

age resolution, with known image column location x(c) and

disparity D(c), we construct a data structure that is used to

generate input for our vehicle detection algorithm. The data

structure is a straightforward 2D histogram where columns

543



Algorithm 1 The multi-resolution feature extraction algo-

rithm

for all Left image pyramid levels p do

Select level-appropriate ROI

Apply vertical Sobel filter across ROI

Choose threshold to select top 15% of non-zero edge

pixels

Binarize left edge image according to this threshold

Store the number N(p) of above threshold pixels

end for

for all Right image pyramid levels p do

Select level-appropriate ROI

Apply vertical Sobel filter across ROI

Compute a threshold that maintains N(p) edge pixels

for the right edge image

Binarize right edge image according to this threshold

end for

Algorithm 2 Depth estimation and x-D histogram construc-

tion

for all Left edge image pyramid levels p do

Form vertical clusters of edge pixels cp via run-length

encoding over each column x
for all Vertical edge clusters cp do

Store column location x(cp), and number of pixels

N(cp)
Perform SAD search to find best disparity match

D(cp) on the right edge image

end for

end for

of the histogram correspond to columns of the image, and

the rows of the histogram correspond to increments of dis-

parity. We populate one of these so-called x-D Histogram

for each pyramid level by adding N(cp) (the number of pix-

els in a cluster) votes for each vertical cluster feature found

at that level. For each populated x-D histogram, we then

extract the local maxima using the mean shift algorithm [5],

as shown in algorithm 3. Fig. 4 shows the x-D histogram

generated for a single vehicle.

Algorithm 3 x-D Histogram construction

for all Pyramid levels p do

for all Vertical edge clusters cp do

Add N(cp) votes to the bin x(cp),D(cp) of x-D His-

togram p
end for

Perform mean-shift on the x-D Histogram p to extract

the maxima Mp

end for

The vehicle detection algorithm analyses, on a per-gate

basis, the maxima extracted from the x-D histogram. The

algorithm first computes a coarse disparity Dg for each gate

g; Dg is the disparity value that maximises the overlap of

the edge points that lie within the gate’s image ROI in the

left and right edge pyramid; fig. 3 shows an image overlay

where the edge points from the right image (in red) have

been shifted by Dg pixels so that they best overlap the edge

pixels from the left image (in green). Dg permits a coarse

estimation of depth to the dominant features within a gate,

and permits us to compute the expected image width wx,

in pixels, of a vehicle at that depth if one is present. This

nominal width wx is used to select pairings of peaks in the

x-D histogram whose separation is close to the width of a

vehicle. The pair of peaks that satisfy the width require-

ment and have the largest combined support are chosen as

the outer edges of a detected vehicle, and an image ROI is

derived that encompasses all edge points that contribute to

the chosen peak pair, and any peaks that lie between them

in the x-D histogram. Fig. 5 shows the final output of this

algorithm. If no suitable peak pairing can be selected, the

algorithm returns no detection.

Figure 3. Coarse edge point alignment.

3.1.3 False positive rejection

Not all peak pairs chosen by our algorithm correspond

to vehicles; road markings and other scene structures can

sometimes generate 3D peak pairings that generate false de-

tections from our algorithm. To reduce these false positives,

we run four successive false positive rejection schemes. The

first is based upon computing a consensus score between

the detection ROI as projected onto the left and right edge

pyramids. It two selected edges span a region that does

contain a flat vehicle-like surface, then the edge pixels be-

tween the peaks will all be well explained by the refined

disparity value and the consensus score will be high; if the

edges do not encompass a vehicle, then the edge pixels be-

tween the peaks will not align well under the refined dis-

544



Algorithm 4 Vehicle detection

for all Detection gates g do

Select gate pyramid level p and gate ROI

Estimate coarse disparity Dg that maximises overlap

between edge pixels in left and right edge pyramid in

the ROI set by gate g
Use Dg to set the expected with wx, in pixels, of a

vehicle-sized object

Choose from Mp the set of peaks, Mg , that lie inside g
Choose from Mg all pairs of peaks whose separation

in x is close to wx

Choose the pair of peaks with the strongest combined

edge support

Detected vehicle ROI encompasses all edge pixels that

belong to peaks in Mg that lie between the two selected

peaks in the x-D histogram

Detected vehicle refined disparity Dgref is computed

as the mean of the disparity of edge pixels in the ROI

end for

Figure 4. x-D Histogram. The extracted edge clusters, shown in

purple, are projected into the x-D histogram. Blue lines denote the

connection between image features and the corresponding peaks

in the histogram.

Figure 5. The detection resulting from our x-D histogram analysis

parity, and consensus will be low. The second rejection

method analyses the horizontal edge structure within the de-

tection ROI; vehicles typically contain at least one of mul-

tiple strong horizontal features such as the top and bottom

edges of the vehicle, the fender, rear windshield surrounds

and so on. The third rejection scheme compares the edge

pixels selected by the detection ROI with those edge pixels

that are classified as belonging to the ground plane (e.g. the

blue pixels on the right of fig. 1); true detections will not

contain many pixels that lie on the ground. The final re-

jection scheme runs a simple AdaBoost classifier [17], us-

ing histogram of oriented gradients (HOG) features [6], on

the detection ROIs that have survived the previous stages

of pruning. More details can be found in algorithms 5 - 8.

The thresholds found in those algorithms were selected after

experimentation with a range of different data sets. In a cas-

caded false positive rejection scheme as the one described

here, there is no mechanism to recover from early rejection

of positive cases, so the goal during threshold selection was

to maximise the number of true positives, and to rely upon

the next stage to further reduce false positives.

Algorithm 5 Disparity consensus based false positive rejec-

tion

for all Detection ROIs do

Choose the pyramid level p for the detection

Count N , the number of edge pixels inside the detec-

tion ROI

Count Nc, the number of pixels whose location in the

right image is consistent with those in the left edge

image and refined disparity Dgref

if Nc/N > 0.7 then

Accept the detection, and store the value of Nc/N
else

Reject the detection

end if

end for

Algorithm 6 Horizontal structure based false positive rejec-

tion

for all Detection ROIs do

Store width W of the ROI

Convolve left image with a horizontal Sobel filter

Compute horizontal edge clusters

Find length L of longest edge cluster

if L/W > 0.8 then

Accept the detection

else

Reject the detection

end if

end for

3.1.4 Multiple-detection elimination

As shown in figure 1 (left), there is overlap between the

detection gates , and if a vehicle is present in the overlap

545



Algorithm 7 Ground plane based false positive rejection

for all Detection ROIs do

Retrieve vertical edge pixels and count their number N
Retrieve ground plane points

Count Noverlap, the number of ground plane pixels

that overlap detection ROI edge pixels

if Noverlap/N < 0.35 then

Accept the detection

else

Reject the detection

end if

end for

Algorithm 8 AdaBoost false positive rejection

for all Remaining detection ROIs do

Map detection ROI left image data onto 128 × 64 grid

Compute histogram of gradients features on rescaled

image data

Compute classification score s for HOG features

if s > 0 then

Accept the detection

else

Reject the detection

end if

end for

region, it can be detected in more than one gate. We identify

and eliminate multiple detections of a single vehicle using

algorithm 9, which makes use of the consensus test score

Nc/N (computed in algorithm 5).

Algorithm 9 Multiple detection removal

Form a graph G where vertices are detections

for all Detection di do

for all Detection dj , i 6= j do

if ROIs for di and dj overlap by 80% AND dispari-

ties for di and dj are within 1 pixel then

Join di and dj with an edge

end if

end for

end for

Find the connected cliques C of G each clique represents

a (multiple) detection

for all Cliques C do

Find the detection with the largest consensus score

Nc/N
Keep this detection and delete the other detections in

the clique

end for

3.1.5 Temporal consistency and tracker initialization

After first detection, a candidate becomes a tentative track

and we start a simple temporal consistency test before con-

firming the track. If a candidate is present for 4 out of

5 frames in sequence, we declare the tentative track con-

firmed. If there is no vehicle currently being tracked, we

now initialize the tracker with the confirmed detection. If

there is a vehicle being tracked, and the newly confirmed

track is closer to the host than the tracked vehicle, then the

tracker will be terminated and the newly confirmed candi-

date is used to initialize a new track. If the candidate is more

distant from the host vehicle than the current track, then the

new candidate is not tracked.

3.2. Vehicle tracking

We use an extended Kalman filter to estimate the po-

sition, velocity and acceleration of the lead vehicle, and

also its width; the state evolution model is a simple linear

constant acceleration model, and the measurement model

is non-linear to reflect the transformation of our observa-

tions from image and disparity co-ordinates into location

and depth in the world. The most important property to

note here is that the tracker uses its own detection gate that

is guided by the Kalman filter; the tracker’s gate is permit-

ted to move longitudinally with respect to the vehicle, and

through image pyramid levels as the tracked vehicle moves

toward and away from the host. We track a single target un-

til either the target moves out of the host vehicle’s lane (or

vice versa), a decision aided by our lane boundary estima-

tor, or until the target moves beyond the maximum range of

our system.

4. Experiments

4.1. Procedure

Our experimental goal is to measure the detection ac-

curacy of our system; in particular the true positive and

false positive rates are of interest. In the experiments pre-

sented here, we collected 44 image sequences, with a total

of more than 31,000 frames, that cover a range of realistic

on-road operating conditions and vehicle types, including

both cars and trucks. To generate ground truth, we devel-

oped a semi-automatic annotation tool that uses a mixture of

human-guided track initialization and correction, combined

with dense stereo data (generated offline on the left and right

input images using a region-based SAD algorithm) and au-

tomatic tracking. The user loads a data sequence, and steps

through the data until first frame where a vehicle is within

range of the system and in the lane ahead of the host. At this

point, the user clicks on the rear face of the vehicle, and the

dense range data for that part of the image is used in con-

junction with our edge finding routines to generate a ROI

546



that is likely to enclose the vehicle. If this ROI is not ac-

curate, the user can correct it manually by drawing with the

mouse. Once an accurate initial ROI is generated, the user

lets the system run with the same automatic tracker used in

the experimental system; if the tracker produces inaccurate

ROIs at any frame, the user can rewind to those frames and

manually correct the ROI so that it properly surrounds the

vehicle. If the lead vehicle moves out of the host vehicle’s

lane, the user manually terminates the track, and reinitial-

izes at the next point a vehicle is in the lane ahead of the

host.

The ground truth files generated by our tool record the

location of the ROI and average dense stereo range to the

lead vehicle for each frame that such a vehicle is present.

During testing, we save to file the output ROI and esti-

mated range (calculated from the refined vehicle disparity)

for each frame that our vehicle tracker is active. We con-

sider the ground truth and tracker output to be in agreement

for a given frame if the tracked ROI is contained within a

bounding box 20% wider than the ground truth ROI. If the

tracked output ROI does not satisfy this constraint, we have

a false negative. If the tracker data shows an output for a

given frame where the ground truth does not, we have a

false positive.

In the results below, data was collected from a stereo sen-

sor with NTSC cameras with lenses of 48.2 degrees field

of view, and a 7” baseline separates the two cameras. The

maximum working range of this system is 40 meters. We

also have a long range system with the same cameras and

baseline but 15 degree field of view lenses. This system

operates out to 100 meters with similar results.

4.2. Results and Discussion

Table 2 shows the results of running our algorithm on

data sets collected on the road for cars and trucks sepa-

rately, with ‘total’ showing the overall combined result. We

present both a true positive and false positive rate, and also

the average number of frames between false positives. Our

true positive and false positive rates compare favourably

against those presented in table 1, although a direct com-

parison is not possible given that the data sets used in all

experiments differ.

Fig. 6 shows the detection rates (bottom graphs) and the

number of false positives per frame (upper graphs) on a per-

sequence basis. The mean of the quantities is plotted in

purple. It can be seen that a few sequences distort the aver-

ages. In the case of trucks, sequence 7 shows a higher false

positives per frame rate, and a lower detection rate. Both

of these were due to the same failure; the tracker became

distracted for 36 frames, causing at once both the false pos-

itives (tracking the distraction) and false negatives (missing

the truck that was present). In the case of the car data, se-

quence 29 shows a similar failure. If we neglect these two

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Sequence Number

F
P

/f
ra

m
e

FP/frame for car sequences

Average FP/frame

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Sequence Number

F
P

/f
ra

m
e

FP/frame for truck sequences

Average FP/frame

0 5 10 15 20 25 30
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Sequence Number

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Detection rate for car sequences

Average 
Detection Rate

0 5 10 15
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Sequence Number

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Detection rate for truck sequences

Average FP/frame

Figure 6. Detection and false positive rates.

sequences, our overall detection rate rises to 99.5%, and our

average number of false positives per frame drops to 0.002,

or one false positive every 500 frames. We note that the

plot of false positives per frame indicates that false posi-

tives tend to be episodic, and confined to a few sequences

where our AdaBoost classifier is ineffective rather than be-

ing a general problem everywhere. Given the tiered false-

positive rejection that we designed into our system, this type

of error is preferable; as more sophisticated outlier rejection

schemes become available, they can be naturally incorpo-

rated into our architecture to improve performance.

We also present some visual output from our long-range

narrow field of view system in figure 7.

5. Discussion and Conclusion

We have described an algorithm for the detection of ve-

hicles in the lane ahead of a host vehicle. Off-line detection

results have been presented and are shown to be superior

to other published results both in terms of true positive and

false positive rates. There is scope to drive the number of

false positives per frame down to provide the kind of reli-

ability that an automotive control system requires, and this

shall be a certain focus of future work. The results suggest

that false detection errors are episodic in nature rather than

pervasive, and that these episodes are somewhat rare, which

suggests that fixing specific errors will lead to discrete im-

provements in performance.

The algorithm has been designed to run on relatively

lightweight computing hardware; the current online version

runs, with live graphical display, at a rate of 16Hz on a Pen-

547



# Seq. # Frames TP rate FP rate Mean FP/frame

Car 29 18903 99.55% 1.86% 0.00365

Truck 15 12461 99.09% 1.66% 0.00409

Total 44 31364 99.37% 1.77% 0.00383
Table 2. System performance. TP = true positive, FP = false positive.

Figure 7. Graphical output of the long range system, including

vehicle cut in, host lane change and going underneath a wide over-

pass.

tium 4 processor. Many parts of the algorithm are candi-

dates to be run in parallel, and ripe for DSP optimization

en route to automotive hardware implementation, a goal for

future work.

Acknowledgements

We would like to thank Autoliv Electronics America for

financial support and data.

References

[1] D. Alonso, L. Salgado, and M. Nieto. Robust vehicle de-

tection through multidimensional classification for on board

video based systems. Image Processing, 2007. ICIP 2007.

IEEE International Conference on, 4:IV –321–IV –324, 16

2007-Oct. 19 2007.

[2] P. Bergmiller, M. Botsch, J. Speth, and U. Hofmann. Ve-

hicle rear detection in images with generalized radial-basis-

function classifiers. Intelligent Vehicles Symposium, 2008

IEEE, pages 226–233, June 2008.

[3] M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele. Stereo

vision-based vehicle detection. In in IEEE Intelligent Vehi-

cles Symposium, pages 39–44, 2000.

[4] A. Broggi, P. Cerri, and P. C. Antonello. Multi-resolution

vehicle detection using artificial vision. In IEEE Intelligent

Vehicles Symposium, pages 310–314, 2004.

[5] D. Comaniciu and P. Meer. Mean shift: a robust approach

toward feature space analysis. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 24(5):603–619,

May 2002.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. Computer Vision and Pattern Recognition,

2005. CVPR 2005. IEEE Computer Society Conference on,

1:886–893 vol. 1, June 2005.

[7] F. Dellaert and C. Thorpe. Robust car tracking using kalman

filtering and bayesian templates. In Conference on Intelligent

Transportation Systems, 1997.

[8] U. Franke and I. Kutzbach. Fast stereo based object detection

for stop & go traffic. Intelligent Vehicles Symposium, 1996.,

Proceedings of the 1996 IEEE, pages 339–344, Sep 1996.

[9] C.-M. Fu, C.-L. Huang, and Y.-S. Chen. Vision-based pre-

ceding vehicle detection and tracking. Pattern Recogni-

tion, 2006. ICPR 2006. 18th International Conference on,

2:1070–1073, 2006.

[10] C. Knoeppel, A. Schanz, and B. Michaelis. Robust vehicle

detection at large distance using low resolution cameras. In-

telligent Vehicles Symposium, 2000. IV 2000. Proceedings of

the IEEE, pages 267–272, 2000.

[11] R. Labayrade, D. Aubert, and J.-P. Tarel. Real time obsta-

cle detection on non flat road geometry through ‘v-disparity’

representation. In Proceedings of IEEE Intelligent Vehicle

Symposium, volume 2, pages 646–651, Versailles, France,

2002. http://perso.lcpc.fr/tarel.jean-philippe/iv02.html.

[12] E. Richter, R. Schubert, and G. Wanielik. Radar and vision

based data fusion - advanced filtering techniques for a multi

object vehicle tracking system. Intelligent Vehicles Sympo-

sium, 2008 IEEE, pages 120–125, June 2008.

[13] G. Y. Song, K. Y. Lee, and J. W. Lee. Vehicle detection by

edge-based candidate generation and appearance-based clas-

sification. Intelligent Vehicles Symposium, 2008 IEEE, pages

428–433, June 2008.

[14] G. Stein, E. Rushinek, G. Hayun, and A. Shashua. A com-

puter vision system on a chip:a case study from the automo-

tive domain. In EmbedCV05, pages III: 130–130, 2005.

[15] Z. Sun, G. Bebis, and R. Miller. Monocular precrash vehicle

detection: Features and classifiers. IEEE Transactions on

Image Processing, 15(7):2019–2034, 2006.

[16] Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection:

A review. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28:694–711, 2006.

[17] P. Viola and M. Jones. Robust real-time object detection. In

International Journal of Computer Vision, 2001.

548


