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Abstract

Accurate definition of similarity measure is a key compo-
nent in image registration. Most commonly used intensity-
based similarity measures rely on the assumptions of inde-
pendence and stationarity of the intensities from pixel to
pixel. Such measures cannot capture the complex interac-
tions among the pixel intensities, and often result in less sat-
isfactory registration performances, especially in the pres-
ence of nonstationary intensity distortions. We propose a
novel similarity measure that accounts for intensity non-
stationarities and complex spatially-varying intensity dis-
tortions. We derive the similarity measure by analytically
solving for the intensity correction field and its adaptive
regularization. The final measure can be interpreted as one
that favors a registration with minimum compression com-
plexity of the residual image between the two registered im-
ages. This measure produces accurate registration results
on both artificial and real-world problems that we have
tested, whereas many other state-of-the-art similarity mea-
sures have failed to do so.

1. Introduction
Accurate definition of similarity measure is a key com-

ponent in image registration [6]. Most commonly used
intensity-based similarity measures, including Sum-of-
Squared-Differences (SSD), Correlation Coefficient (CC),
Correlation Ratio (CR) and Mutual Information (MI), rely
on the assumption of independence and stationarity of the
intensities from pixel to pixel [14]. These similarity mea-
sures are defined only between the corresponding pixels
without considering their spatial dependencies. Further, the
intensity relationship is assumed to be spatially stationary.
As a result, such measures tend to fail when registering two
images corrupted by spatially-varying intensity distortion.

Real-world images often have spatially-varying inten-
sity distortions. For instance, brain MRI images often
can be corrupted by slow-varying intensity fields; visual-
band images can have illumination non-homogeneity and

reflectance artifacts [6]. These complex distortions do not
obey the pixel-wise independence or stationarity assump-
tion and cannot be captured by simplistic intensity relation-
ships. To illustrate this argument, consider aligning the two
images in Figure 1. The smaller image (B) is a crop of the
larger image (A) corrupted by an additive spatially-varying
intensity field (simulated by the sum of random Gaussians).
Figure 2 plots the values of several similarity measures, in-
cluding SSD, CC, MI and our new similarity measure called
Residual Complexity (RC), with respect to horizontal shift
of B over A. Only RC achieves its optimum at the correct
image alignment (zero translation).

A

B

Figure 1. Gray stripe registration experiment.

To deal with complex spatially-varying intensity distor-
tion, one has to account for non-stationary intensity rela-
tionships and spatial pixel dependencies. El-Baz et al. [2]
proposed to learn a prior appearance model of the first im-
age using a Markov-Gibbs random field with pairwise inter-
action, and then transform the second image to maximize its
probability under the learned appearance model. Wyatt and
Noble [22] proposed to use Markov random fields (MRF)
to iteratively segment the images and register the class la-
bels. Zheng and Zhang [24] proposed a MAP-MRF frame-
work for intensity-based similarity measures. The frame-
work includes some standard similarity measures and al-
lows defining new ones taking advantage of local pairwise
intensity interactions. The computational complexity of
such methods is high, while the demonstrated performance
is limited. Finally, some methods attempts to correct im-
age intensity simultaneously with registration to remove the
non-stationary distortions [3, 12, 8]. Friston et al. [3] pro-
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Figure 2. Plot of several similarity measures (RC, SSD, CC, MI)
with respect to the translation of the smaller image over the larger
one in Figure 1. Zero translation corresponds to the accurate regis-
tration. Only the Residual Complexity similarity measure gives an
optimum at the correst registration with a wide convergence range.

posed to align the images using standard similarity measure
(SSD), but assuming that one of the images has to be in-
tensity corrected using a non-linear intensity transformation
and a convolution filter. The intensity correction function
is defined as a linear combination of some basis functions
with spatially smooth-varying coefficients. The convolution
filter has to be chosen manually for a specific problem or es-
timated from the images. Modersitzki and Wirtz [8] used a
similar approach, but defined a multiplicative intensity cor-
rection function with a total variation regularizer. In more
recent work, Ashburner and Friston [1] proposed a proba-
bilistic framework for joint registration, intensity normal-
ization and segmentation, using alternating optimization of
corresponding parameters. This method demonstrates accu-
rate performance on brain MRI images, but requires a man-
ual choice of intensity normalization parameters.

We propose a new intensity-based similarity measure to
deal with complex spatially-varying intensity distortions.
We start deriving the similarity measure by introducing an
intensity correction field that brings images into agreement
in intensity space. We learn the adaptive regularization for
the correction field. Analytically solving for the correction
field and adaptive regularization allows us to derive an adap-
tive similarity measure that is robust to spatial intensity dis-
tortions. Interestingly, the final form of our similarity mea-
sure has many analogies in several computer vision areas,
such as image compression, sparse coding and topographic
learning. Our similarity measure can be interpreted as one
that favors a registration with minimum compression com-
plexity of the residual image between the two registered im-
ages. Thus, we name it the Residual Complexity (RC) sim-
ilarity measure.

2. Method
Consider two images I and J to be aligned, assuming

the following intensity relationship:

I = J(T ) + S + η (1)

where S is an intensity correction field and η is zero mean
Gaussian noise (note that for any two images there always
exists a correction field S). T is the geometric transforma-
tion that aligns I and J . The maximum a posteriori (MAP)
approach to estimate S and T is to maximize the probability

P (T , S|I, J) ∝ P (I, J |T , S)P (T )P (S), (2)

where we assume the independence of T and S. The first
term is a joint likelihood of the images, which leads to the
familiar similarity measure of SSD [14]; P (T ) is a prior
used to regularize the transformation and P (S) is a prior
on S that reflects our assumption on spatial intensity inter-
actions. Now, we also assume that pixel-wise probabilities
are i.i.d., but only given the correction field. It is common
to formulate the prior on the correction field in the form
P (S) ∝ e−β‖PS‖2 . MAP estimation in Equation 2 is equiv-
alent to minimization of the following objective function:

E(S) = ‖I − J − S‖
2

+ β ‖PS‖
2 (3)

where images and correction field are in column-vector
form, ‖·‖ is Euclidean norm and P is a regularization opera-
tor for S (we have not yet specified the form of P). For now
we omit the transformation T and its regularization term, to
make the derivation of S more clear.

Equating the gradient to zero, we solve for S:

− 2(I− J − S) + 2βPT PS = 0 (4)
S = (Id + βPT P)−1r (5)

where Id is the identity matrix and r = I − J is the resid-
ual vector (difference image). The inverse always exists,
because PT P is positive semidefinite. Substituting S back
into the objective function (3), we get:

E =
∥

∥

(

Id − (Id + βPT P)−1
)

r
∥

∥

2

+

β
∥

∥P(Id + βPT P)−1r
∥

∥

2

=

rT
(

Id − (Id + βPT P)−1
) (

Id − (Id + βPT P)−1
)

r

+ βrT (Id + βPT P)−1PT P(Id + βPT P)−1r (6)

The matrix PT P is square, symmetric and positive semi-
definite. Thus, it allows spectral decomposition:

PT P = QΛQT , Λ = d [λ1, .., λN ], λi ≥ 0 (7)

Substituting Equation 7 in Equation 6, we can simplify the
objective function greatly, because Q is orthogonal, and the
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majority of multiplications and inversions are only with di-
agonal matrices within.

E = rT Q d(
β2λ2

i + βλi

(1 + βλi)2
)QT r

= rT Q d(
βλi

1 + βλi

)QT r = rT QLQT r = rT Ar. (8)

where d() denotes a diagonal matrix. With A = QLQT we
defined a new square, symmetric and positive semidefinite
matrix with eigenvalues L:

L = d([l1, .., lN ]) = d(
βλi

1 + βλi

), 1 ≥ li ≥ 0 (9)

Note that eigenvalues of A are all nonnegative and bounded
between [0, 1]. Now, if we choose a particular regularization
operator P, then A is known and we can minimize

E(T ) = rT Ar = (I − J(T ))T A(I − J(T )) (10)

with respect to the transformation T . The matrix A is of
size N2, where N is a number of image pixels. This equa-
tion represents the squared Mahalanobis distance between
the images, where A represents an inverse covariance ma-
trix.

So far we have not specified the eigenvectors and eigen-
values of the operator PT P = QΛQT . A large class of
operators PT P have the same eigenvector basis Q and dif-
fer only in eigenvalues. In our method, we will choose a
particular form of Q (see Section 3) without specifying the
eigenvalues, which are absorbed in matrix L. Instead, we
estimate L within the optimization framework. Such adap-
tive regularization allows greater flexibility with respect to
the choice of P. Consider solving for the eigenvalues ma-
trix L:

E(L) = rT Ar = (QT r)T L(QT r), 1 ≥ li ≥ 0 (11)

A trivial, but not interesting, minimum for E(L) is with an
all-zeros matrix L. To avoid this, we impose a regulariza-
tion on the eigenvalues L that prefers L to be flat (has rel-
atively equal elements) and large but still bounded in [0, 1].
The motivation is as follows. Notice that if L is identity
(or multiples of identity), then the inverse covariance A is
also identity, and the objective function simplifies to regular
SSD:

E(L) = (QT r)T I(QT r) = rT r = ‖r‖2 (12)

which is equivalent to the assumption of no regularization
on S. SSD is a valid and optimal objective function if the
images are corrupted by i.i.d. Gaussian noise. The more the
eigenspectra (L) deviate from flat, the more off-diagonal
elements appear in A, which means that the noise is more

correlated. As far as the true noise covariance is unknown,
we want to assume the least required correlation possible
and thus a flat L. This leads us to define a regularization
term on L as

R(L) = −
∑

i

log li +
∑

i

li (13)

It consists of two terms: the first term forces li to be non-
negative (similar to a log-barrier function) and flat (similar
to ML estimation); the second term keeps eigenvalues from
growing arbitrary large. Now, our objective function be-
comes

E(L) = (QT r)T L(QT r) + αR(L) (14)
where α is a trade-off parameter. Differentiating the equa-
tion with respect to all li and equating the derivative to zero,
we obtain

(qT
i r)2 − α

1

li
+ α = 0; li =

1

(qT
i r)2/α + 1

(15)

where qi are eigenvectors in Q (Q = [q1, ..,qN ]). As a
check we see that li are indeed bounded within [0, 1]. Sub-
stituting this result back into Equation 14, we obtain

E =

N
∑

n=1

[
(qT

n r)2

(qT
n r)2/α + 1

− α log
1

(qT
n r)2/α + 1

+

α

(qT
n r)2/α + 1

] = αN − α
N

∑

n=1

log
1

(qT
n r)2/α + 1

(16)

Now, we bring back the geometric transformation T and
ignore the terms independent of T ; we obtain a novel simi-
larity measure

E(T ) = −

N
∑

n=1

log
1

(qT
n r)2/α + 1

; r = (I−J(T )) (17)

Note that even though we have derived it starting from solv-
ing for the correction field and its regularizer, they are not
explicitly present in the final similarity function form. How-
ever, we still need to define the basis eigenvectors Q.

3. DCT basis
Now, we shall proceed to specify Q. Recall that the

functional form of basis Q initially comes from the eigen-
vectors of PT P = QΛQT , where P is a regularization
operator of the correction field. We choose the discrete co-
sine transform (DCT) basis [19] as a functional form of Q,.
The reasons are two-fold: DCT eigenvectors correspond to
the discrete derivative-based regularizer P and they are the
eigenvectors of the covariance matrix of weakly stationary
stochastic process. In this case, the matrix multiplication
QT r is just a discrete cosine transform (DCT) of r, which
can be computed through FFT in O(N log N) [19].
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Derivative regularization: Consider the first order deriv-
ative regularizer (finite differences matrix) P1, the corre-
sponding self-adjoint operator P2 = PT

1
P1, which appears

after taking the gradient, is a second order derivative matrix
(discrete Laplacian), which decomposes as [19]:

P2 = PT
1
P1 = QΛQT (18)

where Q is the DCT basis (real and orthogonal). Depending
on a choice of boundary conditions and boundary approxi-
mations, there are several DCT choices. The most common
in image processing is DCT-2, which corresponds to Neu-
mann midpoint boundary conditions [19].

If we use the second order regularizer P2, the cor-
responding self-adjoint operator, PT

2
P2, is the fourth

order discrete derivative operator P4 = PT
2
P2 =

QΛQTQΛQT = QΛ2QT , with same set of eigenvectors
as P2. Similarly, derivative operators of higher orders and
their linear combinations, lead to eigenvectors Q and differ
only in eigenvalues. We use a DCT basis for Q, because it
corresponds to derivative-based regularization.

Weak stationarity: Another motivation to use DCT, is
that it corresponds to the covariance matrix of a certain class
of signals. Equation 10 can be interpreted as the Maha-
lanobis distance, where A is an inverse covariance matrix.
By using DCT eigenvectors for A, we can see that the co-
variance matrix is also diagonalized by Q:

Σ = A−1 = (QLQT )−1 = QL−1QT (19)

Sanchez et al. [17] showed that matrices that are diagonal-
ized by DCT basis are symmetric Toeplitz plus scaled near-
Hankel matrices. They also showed that DCT is asymptot-
ically optimal for all finite-order Markov processes; DCT
bases are the eigenvectors of the autocovariance matrix.

It is well known in signal processing theory that with the
assumption of the constant mean and the Toeplitz covari-
ance, a stochastic process is said to be weakly stationary [5].
Thus using the DCT basis Q is implicitly related to assump-
tions of a weakly stationary residual image or a finite-order
Markov process.

4. Implementation
We model the transformation T using the Free Form De-

formation (FFD) transformation with 3 hierarchical levels
of B-spline control points [15]. We use the gradient descent
optimization method to iteratively update the transforma-
tion parameters T . The pseudo-code to compute the objec-
tive function and its gradient is

r = I − J(T ); c = dctn(r); E =
∑

log(c2/α + 1);

∇E = −idctn

(

2c/α

c2/α + 1

)

∇J(T )
∂T

∂θ

(a) reference (b) source

(c) transformation (d) registered

(e) clean registered (f) typical NMI result

Figure 3. Synthetic experiment 1. We register the source image (b)
onto the reference image (a). (d) The registered image. (c) The es-
timated transformation. (e) The registered image without intensity
corruption. (f) Typical performance of NMI similarity measure.
Other tested similarity measures also do not produce any satisfac-
tory results, whereas, RC demonstrates accurate performance.

where dctn and idctn are the forward and inverse multi-
dimensional DCTs, ∇J is the intensity image gradient and
θ represents the transformation parameters. We set the pa-
rameter α to 0.05. We implemented the algorithm in Mat-
lab, and tested it on an AMD Opteron 2GHz Linux machine.
The computation time was about 20 sec for a pair of images.

5. Results
We show the performance of the new similarity measure

on several challenging synthetic and real-life examples. For
the comparison, we have also tested registration with the
SAD, SSD, CC, CR, MI, NMI similarity measures, im-
plemented in Deformable Registration using Discrete Op-
timization (DROP) software [4] and in Image Registration
Toolkit (ITK) [15].
Synthetic Examples: We generated synthetic source im-
ages by introducing both geometric and intensity distortions
to the reference image, and then register source images onto
the reference one. To simulate the geometric distortion, we
perturb a uniform grid of points followed by the thin-plate
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Table 1. The parameter values used for the distortion simulation
for each of the distortion levels. The Gaussian means µK were
selected randomly from the interval [1, Ω], where Ω is the image
domain size. Values of γ are selected randomly from the listed
range.

Distortion level w K µK σ γ
1 0.2 1 [1, Ω] 30 1
2 0.4 1 [1, Ω] 30 [0.9, 1.2]
3 0.8 2 [1, Ω] 30 [0.8, 1.5]
4 1.0 8 [1, Ω] 30 [0.5, 2]
5 2.0 20 [1, Ω] 30 [0.4, 3]

(a) reference (b) source

(d) transformation (c) registered

(e) clean registered (f) typical NMI result

Figure 4. Synthetic experiment 2. We register the source image
(b) onto the reference image (a). (d) The registered image. (c) The
estimated transformation. (e) The registered image without inten-
sity corruption together with contours extracted from the reference
image. (f) Typical performance of NMI similarity measure. Other
tested similarity measures also do not produce any satisfactory re-
sults, whereas, RC demonstrates accurate performance.

spline (TPS) interpolation according to the grid deforma-
tion. The grid size was 7 × 7 and its random perturbation
was drawn from a zero-mean Gaussian with 3 pixels std. To

simulate the spatially-varying intensity distortion we cor-
rupted one of the images according to the formula

• I(x, y) = Iγ(x, y)+w xy
MN

+ 1

K

∑K

k=1
e−

‖[x;y]−µk‖
2

2σ2 ;

• Rescale I to [0, 1].

where the first term represents gamma correction on I after
geometric distortion, the second term models a smoothly
varying global intensity field and the last term models
locally-varying intensity field with mixture of K Gaussians.

We performed 100 automatic registrations for differ-
ent levels of synthetic spatially-varying intensity distortions
and a fixed level of known nonrigid deformation, reinitial-
ized randomly at every run. Table 1 shows the values of the
parameters used during simulation for each of the distrotion
levels. To quantify the registration performance, we com-
pute the intensity root mean square error (RMSE) between
the reference and the clean registered images, where the
clean registered image is obtained by applying the transfor-
mation T to the source image without intensity distortion.
We compare the RC performance to several methods: a)
Pre-processing (high-pass filtering) followed by SSD regis-
tration b) Fixed regularizer method (Eq. 10) c) Normalized
MI (ITK implementation [15]). For the fixed regularizer
method, we assumed a particular fixed regularization oper-
ator P (discrete Laplacian), and used Eq. 10 as a similarity
measure.

Table 2 shows the final RMSE value as a function of
intensity distortion level. Figure 3 shows a typical per-
formance on synthetic images (186 × 186 pixels) for the
distortion level 2. Figure 4 shows a typical performance
on brain MRI images (223 × 187 pixels) for the distortion
level 3. We used brain MRI images to evaluate the perfor-
mance shown in Table 2. The registration results obtained
using the RC similarity measure are accurate. The intensity
pre-processing approach shows poor performance. Perhaps
different way of pre-processing can improve the registra-
tion performance, but the true intensity pre-processing is not
known beforehand. Choosing a particular fixed regularizer
P (we used Laplacian) demonstrates a reasonable registra-
tion performance, but still has a significant visible misalign-
ment. Finally, normalized MI shows poor performance. In-
deed, the RMSE between the images prior to intensity dis-
tortion without registration was 0.0913 on average, which is
comparable to the NMI performance in Table 2. The NMI
results have little or no improvement over the unregistered
ones in most of the experiments.
Retina Images: We registered retina images taken 2 years
apart [23]. Retinal images are used in ophthalmology to
assess the evolution of illness, e.g. diabetic retinopathy [16,
10]. For this, the images have to be aligned first.

Retina images are challenging to register due to mul-
tiple intensity artifacts including non-uniform background
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Table 2. Experimental results for different spatially-varying intensity distortion levels.
Distortion Residual Complexity Preprocessing+SSD Fixed regularizer (Eq. 10) Normalized MI

level RMSE, pixels RMSE, pixels RMSE, pixels RMSE, pixels
1 0.0106± 0.0025 0.0531± 0.0071 0.0213± 0.0034 0.0416± 0.0065
2 0.0121± 0.0042 0.0585± 0.0088 0.0289± 0.0031 0.0532± 0.0142
3 0.0285± 0.0048 0.0594± 0.0085 0.0371± 0.0024 0.0786± 0.0121
4 0.0331± 0.0063 0.0693± 0.0092 0.0436± 0.0069 0.0681± 0.0161
5 0.0364± 0.0071 0.0675± 0.0072 0.0441± 0.0062 0.0924± 0.0189

(a) reference (b) source

(c) composite before (d) composite after

(e) registered (f) composite contour

Figure 5. Registration of retina images. (a) reference image; (b)
source image (taken 2 years prior); (c) composite view before
registration; (d) composite view after registration; (e) registered
source image; (f) composite view through contour overlap after the
registration. The RC registration result is accurate; vessel struc-
tures are aligned despite intensity distortions and artifacts.

and blood vessels (with intensity variations and changed
structure) [10]. Most of the retina registration methods are
feature-based [16, 23]; they extract the vascular structure
or landmarks and align them. Figure 5 demonstrates the
RC performance on 2 retina images (200 × 250 pixels).
We achieved accurate registration results as demonstrated
through composite views. We did not do image preprocess-
ing or normalization and did not excluded the background
outside the retina circle. We used the images as they ap-
pear in the figure. Also we did no rigid pre-registration be-
forehand and no regularization of the FFD transformation.
None of the other tested similarity measures succeeded in

reference source

composite before composite after

Figure 6. Registration of 2 iris images. Notice the intensity vari-
ation across the images as well as intensity artifacts from moving
cells, nonconsistent vessel reflections, etc. Our method accurately
registers the images without any additional preprocessing.

registering the retina images. The CC, MI and CR methods
were successful at registering the retina images only after
we defined the region of interest to exclude the area outside
the retina circle and after image filtering and heavy regular-
ization of the transformation (to the extend where the trans-
formation is almost rigid).
Iris Images: We stabilize a video sequence of microscopic
iris images through frame-by-frame registration. This was
necessary to remove the severe jitter and deformation across
frames in order to be able to track leukocyte motion [18].
The deformation between frames is highly nonlinear. No-
tice the intensity variation across the images as well as in-
tensity artifacts from moving cells, nonconsistent vessel re-
flections, etc. Our algorithm proved accurate and effec-
tive for these images (Figure 6). Other similarity measures,
including NMI, CR, CC, SSD, showed poor performance
on iris images without preprocessing, even though different
combinations of parameters were tried.
3D Echocardiography: We sequentially registered a set
3D echo images (24 frames 192 × 274 × 248 voxels) to
find a displacement field of imaged area through time [9].
The displacement field can be used to study the myocardial
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volume 1 volume 8 volume 13 volume 18 volume 24 displacement ED-ES

Figure 7. Estimated motion of the LV contour found during the cardiac cycle (24 consecutive volumes). LV achieves the maximum
contraction at volume 13, then the LV dilates (diastolic phase) up to the volume 22 and starts contracting again (systolic phase). The last
plot shows the displacement fields on LV endocardium between end diastole (ED) and end systole (ES) volumes. We validate the accuracy
of RC registration with groundtruth motion of implanted sonomicrometers. The RC registration-based estimated motion is accurate.

deformation. We acquired the 3D echo sequences using a
Philips iE33 with EKG gating from openchest piglets. Fig-
ure 7 shows the estimated motion of LV superimposed on
the 3D echo images and the displacement vector field visu-
alized at the LV endocardium position between end diastole
and end systole volumes. We used a groundtruth sonomi-
crometer motion to validate the algorithm. We have omit-
ted the description of this procedure in this paper, but note
that the estimated motion has shown a high correlation with
the groundtruth one, which shows the high accuracy of our
method [9].

6. Related work
Analogy with compression and complexity: The term
QT r is a vector of the DCT coefficients of the difference
image r. DCT is popular in image compression, because
most of the image information is represented by a few low-
frequency DCT coefficients. Also DCT approximates the
optimal (in the decorrelation sense) Karhunen-Loève trans-
form with a certain Markovian assumption between the im-
age pixels [13]. This is the idea used in earlier JPEG image
compression format: roughly speaking, find DCT and ig-
nore the smallest coefficients.

In our case, QT r are the DCT coefficients of the residual
image. Intuitively, the image can be highly compressed if
only a few coefficient are non-zero (sparseness). Our simi-
larity measure indeed forces sparseness of the coefficients

E = −
N

∑

n=1

log
1

(qT
n r)2/α + 1

∝
N

∑

n=1

log((qT
n r)2 + α)

(20)
because, the logarithm function decreases quickly to zero
compaired to its increase for larger values of the DCT co-
efficients. This is strongly related to minimization of so-
called zero-norm (or cardinality) of parameters [21].

Our similarity measure implicitly enforces high com-
pressibility of the residual image (or lower Kolmogorov
complexity [7]) using the DCT coefficients (thus, the name
Residual Complexity (RC)).

Analogy with sparse coding In sparse coding [11], one
tries to decompose images in terms of basis functions W =
[w1, ..,wN ] and sparse coefficients c = [c1, .., cN ]T , by
minimizing

E(W, c) =
∑

i

∥

∥xi −Wc
∥

∥

2

+λ
∑

n

log(1+(
cn

σ
)2) (21)

where xi are vectorized image patches, and the bases (W)
are usually overcomplete and nonorthogonal. The last term
measures the sparseness of coefficients c [11], which is sim-
ilar to our objective function in Equation 17. Variations of
this formulation lead to principal components, independent
components, or more specialized filters [20].

Welling et al. [20] proposed to learn the overcomplete
set of filters J = [J1, ..,JN ], using the product of experts
(PoE) framework. PoE is an energy based method, which
defines a probability of x as a normalized product of all
the distributions represented by the individual experts. Un-
normalized experts are chosen to be Student-t distributions,
because this distribution has heavy tails, which makes it a
suitable candidate for modeling constraints that are found
in natural images. The energy of the PoE model is

E(α,J) = −
M
∑

i=1

αi log
1

(1 + 1

2
(JT

i x)2)
+ log(Z) (22)

which is again similar to our objective function in Equa-
tion 17, but for a different purpose. The estimated filters
Ji are further applied for image denoising and inpainting
tasks [20].

Whereas in sparse coding, the task is to search for sparse
bases and coefficients to represent the image, in image reg-
istration we are given the bases and looking for the align-
ment where the residual image has sparse representation by
the bases.

7. Discussion and Conclusion
We have derived a novel similarity measure for image

registration, which accounts for spatial intensity distortions
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and nonstationarities of the images. The similarity measure
intuitively measures the coding complexity of the resid-
ual image. This measure produces accurate registration re-
sults on both artificial and real-world problems that we have
tested, whereas many other state-of-the-art similarity mea-
sures have failed to do so.

Our similarity measure requires initialization of the coef-
ficient α, we found its value in a range [0.01, 0.1] to give ac-
curate results with no significant difference in performance.
Generally smaller values of α forced sparser coefficients,
which resulted in more accurate registration, but also lead
to more local minima of the similarity measure.

Our underlying assumption on the correction field was
a simple additive one. Nevertheless, our similarity mea-
sure showed robust performance both during our synthetic
and real experiments, where the intensity correction func-
tion can be complex. The explanation for the accurate per-
formance of RC in such cases is as follows - even when
the real residual image can be complex, its form still has
to be simpler (represented sparsely by the basis functions)
than the one with inaccurate registration. Thus, RC will still
work with some complex intensity distortions.
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