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Abstract

Current work in object categorization discriminates
among objects that typically possess gross differences
which are readily apparent. However, many applications
require making much finer distinctions. We address an
insect categorization problem that is so challenging that
even trained human experts cannot readily categorize im-
ages of insects considered in this paper. The state of the
art that uses visual dictionaries, when applied to this prob-
lem, yields mediocre results (16.1% error). Three possi-
ble explanations for this are (a) the dictionaries are un-
supervised, (b) the dictionaries lose the detailed informa-
tion contained in each keypoint, and (c) these methods rely
on hand-engineered decisions about dictionary size. This
paper presents a novel, dictionary-free methodology. A
random forest of trees is first trained to predict the class
of an image based on individual keypoint descriptors. A
unique aspect of these trees is that they do not make deci-
sions but instead merely record evidence—i.e., the number
of descriptors from training examples of each category that
reached each leaf of the tree. We provide a mathematical
model showing that voting evidence is better than voting de-
cisions. To categorize a new image, descriptors for all de-
tected keypoints are “dropped” through the trees, and the
evidence at each leaf is summed to obtain an overall evi-
dence vector. This is then sent to a second-level classifier
to make the categorization decision. We achieve excellent
performance (6.4% error) on the 9-class STONEFLY9 data
set. Also, our method achieves an average AUC of 0.921 on
the PASCAL06 VOC, which places it fifth out of 21 methods
reported in the literature and demonstrates that the method
also works well for generic object categorization.

1. Introduction

A central concern of recent research in computer vi-
sion has been generic object recognition, as exemplified by
benchmark datasets, such as PASCAL [7]. Such research
seeks to understand the universal ability of humans to rec-
ognize that previously-unseen objects belong to generic ob-
ject classes. The object classes tend to be very distinct, with
gross differences that are easy for humans to distinguish.

While this addresses important fundamental questions in
computer vision, it does not solve any pressing application
problem. In contrast, our research is focused on the problem
of automating biodiversity studies to support biomonitoring
(i.e., monitoring the health of ecosystems by monitoring the
abundance and diversity of the species in the system) and
fundamental ecological research (e.g., understanding pop-
ulation dynamics, mapping species distribution and habi-
tat, measuring species’ response to climate change, assess-
ing the effectiveness of restoration and remediation efforts).
Specifically, our goal is to develop general-purpose meth-
ods for categorizing images of arthropods (insects, spiders,
etc.) to the level of family, genus, or species. This is an
under-explored domain of categorization – that of classify-
ing extremely challenging images that show objects exhibit-
ing large intra-category variations and small inter-category
differences, so that even trained human experts cannot eas-
ily categorize them, as illustrated in Fig. 1.

For the past several years, we have been collecting, pho-
tographing, and manually-classifying stonefly larvae to cre-
ate a labeled database of images [10]. Stoneflies inhabit
freshwater streams, and they are known to be a sensitive and
robust indicator of stream health and water quality. While
it is easy to collect specimens, a high degree of expertise
is required to classify specimens according to species. This
has severely limited their use in biomonitoring. An auto-
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Figure 1. Sample images from our STONEFLY9 dataset. The top
and bottom rows show two distinct stonefly species, difficult to
classify even for trained human experts. In addition to small inter-
class differences, STONEFLY9 presents additional challenges to
object categorization: (1) The images show imperfect dorsal views
of insects which may be only partially visible; (2) The geometric
and photometric properties (e.g., size, color, and texture) change
significantly with the insect’s age; blob-like parts of the insects
may contain specularities; multiple legs and antennae allow these
highly articulated insects to appear in a wide range of poses.

mated system for photographing, classifying, and sorting
specimens could greatly advance biomonitoring for water
quality and basic ecological research.

In previous work [10], we applied the standard bag-of-
keypoints dictionary approach [4, 16, 1, 8] to this prob-
lem. Our first dataset, STONEFLY2, consisted of images
of two categories of stoneflies (known as Cal and Dor). We
applied three different interest operators to identify key-
points and extracted SIFT descriptors from each keypoint
region. These were then clustered (by fitting a Gaussian
mixture model via EM) to create a separate visual dictio-
nary for each combination of class and detector. Each im-
age was then re-represented as a histogram of the number
of occurrences of each dictionary entry (for each dictio-
nary), and these histograms were concatenated to create a
feature vector which was then fed to a classifier to perform
the categorization. We applied various classifiers including
boosted decision trees and boosted logistic model trees. On
STONEFLY2, this bag-of-keypoints approach achieves an
error rate of 20.3%. To assess this level of performance, we
measured the ability of people (26 students and faculty from
the zoology department) to perform the same task with the
same images and discovered that they exhibited an error rate
of 21.4%, which was statistically indistinguishable from our
system. Subsequently, we have enlarged our database to in-
clude images of 9 stonefly categories to create the STONE-
FLY9 database. On this database, the bag-of-keypoints ap-
proach achieves an error rate of 16.1%, which is considered
by our entomology collaborators to be mediocre.

Based on this work, we conclude that state-of-the-art
generic object categorization methods are not sufficient to
achieve high performance on difficult categorization prob-
lems such as STONEFLY9. We hypothesize that there are
three reasons for the failure of these techniques. First,

the dictionaries are constructed using purely unsupervised
methods (although they are class-specific). As many re-
searchers have pointed out, the regions of descriptor space
that have high probability density—that is, the ones found
by K-means or Gaussian mixture model clustering—are
not necessarily the most useful for discriminating among
categories. Second, when detected regions are mapped
to dictionary entries, much information is lost. A 128-
dimensional SIFT descriptor captures detailed information
about the intensity texture of the detected region. Mapping
this to one entry in a 2700-word dictionary (as we did for
STONEFLY9) retains at most 12 bits of information (vs.
8×128=1024 bits for SIFT). Third, the dictionary approach
requires manual tuning to select the number of clusters and
the method for mapping descriptors to clusters (Euclidean
distance, Mahalanobis distance, keyword counts, keyword
probabilities, etc.).

Several researchers have developed quasi-supervised
methods for creating visual dictionaries [14, 16, 17, 19].
Winn, et al. [16] first learn a very large number of clusters
via K-means clustering and then merge clusters to maxi-
mize their discriminative power. Moosmann, et al. [14]
build a forest of extremely randomized decision trees that
attempt to classify the image directly from individual de-
scriptor vectors. They then define one dictionary entry for
each leaf in these trees. This method is discriminative, but it
creates a very large dictionary which can be unweildy and
lead to overfitting. Yang, et al. [17] construct a sequence
of “visual bits” through a boosting algorithm. Each visual
bit provides a boolean feature that can be input to a clas-
sifier. Zhang and Dietterich [19] post-process an unsuper-
vised dictionary with relevant component analysis to im-
prove the discriminative power of each cluster. While all of
these methods improve on the dictionary construction pro-
cess, they do not address the other two sources of the failure:
the loss of information when mapping to the dictionary and
the problem of manual engineering of the system.

In this paper, we pursue a simple and elegant approach
that is able to address all three shortcomings of the bag-
of-keypoints approach. Like Moosmann [16], the method
constructs a randomized forest of trees that directly ana-
lyze the descriptor vectors. However, instead of using the
trees to define a dictionary, we view the trees as a way of
discriminatively structuring the evidence in the training set.
Each leaf of each tree stores a histogram of the number of
training examples from each category that reached that leaf.
To classify a new image, the detected keypoint descriptors
are dropped through all of these evidence trees. Each time a
keypoint reaches a leaf, the evidence stored in that leaf is ac-
cumulated into an overall histogram. After normalization,
this histogram is then passed to a second level (“stacked”)
classifier to make the final category prediction. In effect,
each keypoint votes for the category of the object, but the
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Figure 2. Block diagram of our approach: Descriptors of inter-
est points and edges are directly input to a random forests with-
out computing a visual dictionary. Each leaf node in the forest
stores a histogram of the class labels of the training descriptors
that reached this leaf. Descriptors for a new image are “dropped”
through the forest until they reach a leaf node. The class his-
tograms at all such leaves are summed to produce a single class
histogram which is then provided as a feature vector to a boosted
ensemble of decision trees that makes the final prediction.

vote is based on the corresponding evidence from the train-
ing set. We call this method “Voting Evidence”.

We also studied a strategy whereby when a keypoint
reaches a leaf of a tree, it places a single vote for the most
frequent class in that leaf (according to the training set),
which is the standard way that decision trees work. These
votes are accumulated and passed to the stacked classifier.
We call this method “Voting Decisions”. We provide exper-
imental evidence and a mathematical model showing that
voting evidence is better than voting decisions.

An added benefit of the stacked classifier is that we can
easily fuse different kinds of descriptors as well as arbitrary
image-level information. In this paper, in addition to key-
points, we also extract contour features and build evidence
trees for them. The evidence accumulated from these trees
is provided to the stacked classifier as additional features.

Our voting evidence method achieves an error rate of
6.4% on STONEFLY9 using only keypoint descriptors.
With the additional contour-based descriptors, the error rate
improves to 5.6%. Our entomologists view this as ex-
tremely good accuracy—more than sufficient to provide a
basis for a practical biomonitoring system.

This paper is organized as follows. Sec. 2 describes fea-
tures and their associated descriptors. Sec. 3 explains details
of the “Voting Evidence” and “Voting Decisions” methods
and the stacked classifier. Sec. 4 presents experimental re-
sults on STONEFLY9 and PASCAL06; Sec. 5 presents a
theoretical analysis of voting evidence and shows that un-
der reasonable assumptions it gives lower error than voting
decisions. Section 6 presents our concluding remarks.

2. Feature Extraction

This section explains the image features and descriptors
we use.

Figure 3. The top and bottom rows show different species from
STONEFLY9, which are also different from those shown in Fig. 1:
(left) A sample original image; (middle) Detected edges and el-
lipses fitted to pixels of each edge; and (right) Zoomed-in detail
marked by a white box in (left). The large ellipse localizes the in-
sect and provides information about the insect’s main orientation.

Keypoints: On each image, we apply the following detec-
tors to extract interest points: the Harris and Hessian de-
tectors [13], the PCBR detector [5], and the Kadir-Brady
salient region detector [9]. The PCBR detector, intro-
duced in [5], detects stable watershed regions surrounded
by curvilinear structures. These are particularly well-suited
to the shapes found in our biological images. Our studies
on STONEFLY4 showed that combining multiple detectors
gave better results than any single detector [10]. Each de-
tected keypoint is represented by the SIFT descriptor [12]
for subsequent processing.
Edges are extracted by the Canny edge detector. Let E de-
note the set of detected edges, E = {e1, . . . , en, . . . , eN}.
Intrinsic and spatial-layout properties of each edge, en, are
then used to define its descriptor vector xn. Many of these
properties are defined relative to the entire insect’s orienta-
tion in the image. To identify the spatial extent and orienta-
tion of the insect, we make use of the fact that each image
contains only one insect and that the background is nearly
uniform. This means that most edges detected in the image
belong to the insect. In particular, we expect that an ellipse,
ΛE , fitted to all pixels that belong to E, will localize the in-
sect and provide useful information about the insect’s head,
tail, and main orientation. After estimating ΛE , we com-
pute the following: angle, φE , that the major principal axis
of ΛE subtends with the x axis of the image; length ME of
the intercept of the major principal axis with ΛE ; and length
mE of the intercept of the minor principal axis with ΛE .
The parameters (φE ,ME ,mE) of ΛE are taken to represent
the orientation, length, and width of the insect, as illustrated
in Fig. 3. To specify intrinsic and spatial-layout properties
of each edge, en ∈ E, we fit an ellipse, Λn to all pixels
belonging to en and estimate the parameters (φn,Mn,mn)
in the same way as for E. For estimating the spatial layout
properties, we define a neighborhood system among the de-
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tected edges based on their Delaunay triangulation. To this
end, each edge en is represented as point corresponding to
the center (xn, yn) of the ellipse Λn. Neighbors of en are
all those edges to which en is connected in the Delaunay
triangulation.

For each edge en, we compute the following intrinsic and
spatial layout properties: (1) Area coverage αn = area of Λn

area of ΛE
;

(2) Orientation φn measured relative to φE , to achieve
rotation-in-plane invariance; (3) Contrast γn estimated as
the average gradient magnitude along en; (4) Signed curva-
ture κn estimated on a piecewise linear estimate of en; (5)
Displacement vector dn between the center (xE , yE) of el-
lipse ΛE and the center (xn, yn) of ellipse Λn; (6) Number
of neighbors νn estimated from the Delaunay triangulation
of all edges; (7) Mean μn and variance σn of strengths of
interaction between en and its neighbors, where each inter-
action strength is inversely proportional to the length of the
Delaunay arc connecting the two corresponding neighbors;
(8) Context vector χn computed as the standard 16 × 16
log-polar descriptor that counts the number of edge pixels
in the neighborhood of en, where the descriptor is centered
and scaled with respect to ellipse Λn.

In summary, the descriptor associated with each
edge en contains the following properties xn =
{αn, φn, γn, κn,dn, νn, μn, σn,χn}.

3. Overall Classification Architecture

Fig. 2 shows the overall architecture of the system. We
first describe the classification process and then the train-
ing process. The architecture is parameterized by a set of
Q of (detector, descriptor) pairs c = 1, . . . , C, where the
detectors may detect keypoints, edges, etc. and the descrip-
tors can be SIFT, filter banks, edge descriptor defined above,
etc. To classify a new image I , we iterate over each (detec-
tor, descriptor) pair c in Q, apply the detector to I , and then
represent each detection using the descriptor. This produces
a bag of descriptor vectors Bc

I = {xc
I,1, . . . , x

c
I,NI

}.
For each combination c, let RF c denote a previous-

learned random forest of evidence trees. Each descriptor
vector xc

I,j is “dropped through” each tree in RF c until
it reaches a leaf �. That leaf � stores a histogram hc

� such
that hc

�[k] is the number of training examples from class k
that reached the leaf during training. These histograms are
summed over all trees to obtain hc

j and over all j to obtain
hc. Each hc is normalized (to sum to 1), and then the C his-
tograms are concatenated to form the second level feature
vector. This is then processed by the stacked classifier to
assign a category to the image.

The learning process involves three steps: (a) learning
the random forests, (b) constructing the second-level train-
ing set, and (c) learning the stacked classifier.
Learning a random forest. A random forest [2] is a set of
decision trees all created from a single training set S. Each

tree is constructed in the usual top-down way as in C4.5
[15], but with two modifications. First, the training data for
each tree is obtained by taking a bootstrap sample [6] of
S. (A bootstrap sample of size N is created by drawing N
points uniformly at random with replacement from S.) Sec-
ond, recall that each node η of a decision tree compares the
value of a chosen attribute a (e.g., xc

Ij [a]) against a chosen
threshold θη and branches left if xc

I,j [a] ≤ θη and right oth-
erwise. When growing a standard decision tree, all possible
attributes a and all reasonable thresholds θ are considered
and the (a, θ) combination with the highest discriminative
power is chosen. In a random forest, at each node a random
subset of size 1+ �log A� is chosen (where A is the number
of attributes; 128 for SIFT). Then the most discriminative
combination (a, θ) is chosen by evaluating only this ran-
dom subset. These two forms of randomization, bootstrap
subsampling of the training data and random subsetting of
the attributes at each node, act together to create a diverse
ensemble of decision trees. In a standard random forest, a
new instance is classified by a vote of the decisions of the
individual trees.

We modify this random forest learning algorithm in sev-
eral ways. First, to construct the training set Sc for RF c,
we start with each bag of descriptors Bc

I for each image
I (with category label yI ) and create one training example
for each descriptor vector: (xc

I,j , yI). Then, we generate
the bootstrap samples by drawing images with replacement
from the set of training images. Second, we constrain the
growth of the tree so that every leaf node contains at least
20 training examples. Finally, in each leaf �, we store the
histogram h� of the number of training examples belonging
to each class.

For each detector/descriptor combination c, we train a
random forest RF c containing 100 evidence trees.

Creating the stacked training set. Once the initial random
forests are built based on individual descriptor vectors, we
then construct a second-level (“stacking”) training set that
contains one example per image. The stacking example for
an image I is computed as follows. Because each tree is
grown on a bootstrap sample, there is a set of so-called “out
of bag” images that were not used to grow that tree because
they were not members of the bootstrap sample. First, we
initialize a histogram hc for each detector/descriptor com-
bination c. Then, for each image I , we take its descriptors
and “drop” them through each tree for which I was “out
of bag”. Each time a descriptor reaches a leaf � of random
forest RF c, we take the histogram h� and add it into a his-
togram hc. Finally, for each c, we divide hc by the sum of
its components to normalize. This gives us one histogram
for each detector/descriptor combination. These histograms
are concatenated to form the feature vector for the stacking
example. The class label of image I is then assigned to be
the class label of this stacking example. Note that when we
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concatenate the various normalized histograms hc, we are
fusing the information from both keypoint and edge fea-
tures. Any other source of image-level information could
be included in the stacking examples at this point.
Training the stacked classifier. We apply the Adaboost
algorithm to train an ensemble of 200 decision trees.

This architecture addresses the three problems that
plague the dictionary approach. First, because the evidence
trees examine the individual attributes of the descriptor vec-
tors, no information is lost in quantization. Second, the evi-
dence trees are grown discriminatively, so there are no unsu-
pervised steps. Third, the only parameters to be determined
in the architecture are (a) the minimum number of training
examples in each leaf node, (b) the number of trees in each
random forest, and (c) the number of boosting iterations for
the stacked classifier. Our experiments have shown that the
results are insensitive to all of these parameters.

4. Experimental Results

We evaluated our categorization approach on the
STONEFLY9 [10] and PASCAL06 datasets [7]. STONE-
FLY9 consists of 3826 images obtained by imaging 773
stonefly larvae specimens, examples of which are shown in
Figs. 1 and 3. The dataset contains nine classes referred to
as Cal, Dor, Hes, Iso, Mos, Pte, Swe, Yor and Zap. The
experimental setup for STONEFLY9 consists of a stratified
3-fold cross validation using two folds for training and one
for testing. Images from the same specimen are constrained
to belong to the same fold. PASCAL06 consists of 5304
images of natural scenes that contain 10 object classes of
interest. The object classes in PASCAL06, as in other pop-
ular benchmarks, differ from one another significantly.

For STONEFLY9, we apply three keypoint detectors
(Hessian, Kadir-Brady, PCBR interest points) and the
Canny edge detector. Keypoints are represented using SIFT
descriptors, and edges are represented using the edge de-
scriptor presented in Sec. 2. Four random forests are
trained. For PASCAL06, we apply four detectors (Har-
ris, Hessian, PCBR and regularly sampled image patches
of sizes 24, 32, and 64 pixels) and represent each resulting
keypoint using 3 detectors: SIFT, Color SIFT, and the fil-
ter bank descriptor employed by Winn et al. [16]. Twelve
random forests are trained (one for each combination of de-
tector and descriptor). When growing the random forests
for the Hessian and Harris detections in PASCAL06, there
are so many detections (over 1.6·106) that we cannot use all
of them when growing any single tree. Hence, for each tree,
we draw a random subsample of 40% (for Hessian) and 35%
(for Harris) of the detections prior to growing each tree.

Each PASCAL06 image can contain several objects from
the same category or from multiple categories. We treat
each object in each image as a separate instance, and, when
training the classifiers, we consider only those detections

Figure 4. Examples of most discriminative patches for STONE-
FLY9. The rows correspond to the 9 classes in alphabetical or-
der from the top. The first five columns are the most informative
patches for Kadir; the next five for Harris; the last five for PCBR

that fall exclusively within the bounding box for that ob-
ject. Detections from regions where the bounding boxes
overlap are discarded. In testing, we must of course use all
detections in the image. To reduce the effect of background
noise the stacked dataset is created by adding up for each
class k only the N detections with the highest hc

j [k] val-
ues. The value of N was estimated for each class from the
training set from: 25, 50, 100, 200, 400, 600 and all de-
tections. For most classes, all the detections on the images
were used. Note that unlike most work with PASCAL06,
we train a single multi-class system rather than training a
separate classifier for each category.

4.1. Qualitative Results

Fig. 4 shows the most discriminative patches of the test
STONEFLY9 images as selected by our classifier. The
patches shown are those with the highest hc

j [k] values.
There are patches of many different scales. The PCBR de-
tector has selected whole-bug images for Mos and Yor. Our
experts confirm that these two classes are best recognized
by their overall shape. For Hes, PCBR has picked out an
interesting 2-lobed area in the center of the back. Although
not previously noticed by entomologists, subsequent exam-
ination of specimens reveals that this area is sufficient to
discriminate among Cal, Hes, and Dor. Other informative
patches found in this figure correspond to “hairs” (actually,
gills) emerging from body joints, regions of the head, and
various textures and spots.

4.2. Quantitative Results

Table 1 shows the results of applying both our stacked
random forest classifier and a visual dictionary classifier to
STONEFLY9. The dictionary approach employed K-means
clustering to define a 100-element dictionary separately for
each combination of detector/descriptor and class. Hence,
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Table 1. Classification Error on STONEFLY9. Because keypoint
dictionaries cannot incorporate edge features, no results are re-
ported for configurations involving them.

Stacked Visual
Detector R. Forest Dict.
Hessian 15.5±2.8 34.0±3.1
Kadir 11.1±1.1 23.9±1.3
PCBR 11.2±1.8 28.1±1.0
Edges 36.3±1.1 -

Hessian + Edges 11.4±1.9 -
Kadir + Edges 9.8±0.4 -
PCBR + Edges 9.2±1.8 -
Hessian + Kadir 8.1±1.5 19.0±2.5
Kadir + PCBR 7.8±1.6 19.2±1.7
PCBR + Hesaff 7.8±2.3 20.2±2.6
All keypoints 6.4±1.8 16.1±1.8

Edges + all keypoints 5.6±2.1 -

there were 3×9×100 = 2700 words in the combined dictio-
nary, and hence 2700 attributes in the feature vectors. SIFT
descriptors were separately mapped to the nearest cluster
center in each dictionary and accumulated into a histogram
for classification by a boosted decision-tree classifier con-
taining 200 trees—the same size as the second-level stacked
classifier in our architecture.

On STONEFLY9, the error rate for stacked random
forests is substantially below the error rate of the visual dic-
tionaries. When only keypoints are used, our classification
error is 6.4%, versus 16.1% for the visual dictionaries. In-
deed, the performance of stacked random forests using only
a single detector beats the performance of visual dictionar-
ies when trained on keypoints from all three detectors.

The ability to fuse edges improves the stacked random
forests. The effect is largest when edge information is fused
with SIFTs from a single detector (e.g., Hessian alone has
15.5% error, whereas Hessian + edges has 9.8%). There
is still a gain when edges are fused with SIFTs from all
keypoints—the error rate of the stacked random forests in-
corporating all information is 5.6%.

The time required to train our system is much less than
for the standard visual dictionary approach. The random
forest for the PCBR detector (≈ 400,000 detections) is
trained in 127 min. (amd64 with 2.8 MHz CPU and 4GB
memory). It takes only a few minutes to train the stacked
classifier. Note that the number of attributes that the stacked
classifier receives is small (only 36: 9 classes × 4 descrip-
tors). In contrast, the time to build the final classifier for
visual dictionaries on the three keypoint detectors is over
200 min. because of the large number of attributes (2700).
Note that this time does not include the construction of the
visual dictionary, which requires several hours.

Figure 5 shows the results for PASCAL06 [7, 18, 11].
Each line corresponds to one published method, and each
column shows the (rescaled) AUC. Our method ranks 5th
out of 21 (including ours). The best performing methods
are either exploring the spatial distribution of the keypoints

QMUL_LPSCH

XRCE
QMUL_HSLS

INRIA_Marzszalek

INRIA_Nowak

Ours

(93.6)
(93.3)

(92.6)

(93.2)

(88 1)

(90.8)

(92.1)

INRIA_Moosmann
(88.1)

Figure 5. AUC on the PASCAL06 test set for the top 6 published
method plus our method. For clarity, max/min AUC values have
been rescaled separately for each task. Average AUC is shown
between parentheses.

using spatial pyramid [11] or learning more complex im-
age classifiers [18]. All of these methods learn a separate
classifier for each category, which probably gives them an
advantage over our results, which are generated from a sin-
gle, multi-class classifier.

5. Mathematical Model

In standard random forests, a new instance is classified
by voting the decisions of each tree in the forest. However,
we found that voting evidence was more accurate than vot-
ing decisions. For example, the error rate on STONEFLY9
with Hessian, Kadir and PCBR is 16.4%, 12.0% and 12.3%
respectively for voting decisions as compared with 15.5%,
11.1% and 11.2% for voting evidence. This was surpris-
ing, because the conventional wisdom has been that voting
decisions works best for ensemble learning algorithms (i.e.
bagging, boosting, etc). To understand why voting evidence
leads to improved classification accuracy in object recogni-
tion, we developed the following mathematical model.

Let us consider the simple case where there are two cat-
egories of objects and each image contains exactly one in-
stance of an object. In each image, suppose there are d
detections, and hence, d SIFT descriptor vectors. We will
assume that a fraction π of these are “informative” SIFT
vectors in the sense that they are much more likely to have
come from only one of the two classes. The remaining
(1 − π)d SIFT vectors are assumed to be uninformative,
because they capture irrelevant regions in the background
or foreground regions whose appearance is constant across
the classes.

We will first analyze the case of a single decision tree.
Suppose we have constructed a tree where every leaf has
a true probabilistic margin of γ, by which we mean that if
we consider only the informative SIFTs that reach a leaf,
then fraction 1

2 + γ of them belong to one class and 1
2 − γ
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of them belong to the other class. In our training set, sup-
pose C SIFT vectors reach each leaf. By assumption, πC of
them are informative. If we consider only these informative
SIFTs, what is the probability ε that the majority class of
the training SIFTs does not match the true class of the leaf?
The Chernoff bound [3] provides an approximate answer:

ε ≤ exp[−2πCγ2] . (1)

Unfortunately, our training data also includes the (1− π)C
uninformative SIFTs. These have the effect of reducing the
margin from γ to πγ.
Lemma 1. If the fraction of informative SIFTs is π, the
fraction of uninformative SIFTs is 1 − π, and the margin
of the informative SIFTs at a leaf is γ, then the effective
margin of all of the SIFTS is πγ
Proof: Suppose the true class of a leaf is class 1. Let
us compute the probability that a SIFT reaching that leaf
is labeled with class 1. With probability π, the SIFT is in-
formative, and with probability 1

2 + γ it belongs to class 1.
With probability 1 − π, a SIFT is uninformative, and we
assume uninformative SIFTS have probability 1/2 of being
labeled as class 1. Consequently, the probability that a SIFT
is labeled as class 1 is

π

(
1
2

+ γ

)
+ (1− π)

1
2

=
1
2

+ πγ .

Hence, the effective margin is πγ. �
Now let us consider classifying a new image using this

decision tree τ by classifying each of the d SIFT vectors in
the new image and taking the majority vote of these indi-
vidual classification decisions.

Proposition 1. The error rate εvd (for “voted decisions”) of
classifying each SIFT vector separately and then taking the
majority vote is bounded by

εvd ≤ exp[−2d(πγ(1− 2ε))2]. (2)

Proof: Let ε = exp[−2C(γπ)2] be the probability that each
leaf in the decision tree was incorrectly labeled during the
training process. For concreteness, suppose the object in the
image belongs to class 1 and let x be a SIFT vector selected
uniformly at random from the d detections in the image. We
will compute the probability that x will be predicted by the
decision tree to belong to class 1.

With probability π, x is informative. With probability
1
2 + γ, x will reach a leaf node whose true majority class is
class 1. With probability 1 − ε, x will be correctly labeled
as class 1. With probability 1

2 −γ, x will reach a leaf whose
true majority class is class 2. With probability ε, that leaf
will be incorrectly labeled, so x will be correctly predicted
to belong to class 1. Finally, with probability 1 − π, x is
uninformative, so it will be sent to a randomly-selected leaf

and have probability 1/2 of being labeled as class 1. Col-
lecting these terms and simplifying, the probability that x is
predicted to belong to class 1 is

π

(
1
2

+ γ

)
(1− ε) + π

(
1
2
− γ

)
ε + (1− π)

1
2

=

1
2

+ πγ(1− 2ε)

Hence, the effective margin of τ is πγ(1 − 2ε). We can
treat each detection as an independent draw of a binomial
random variable with this margin and apply the Chernoff
bound to complete the proof. �

Suppose instead that we make our classification decision
by summing the counts (the evidence) computed when the
tree was constructed:

Proposition 2. The error rate εve (for “voted evidence”) of
accumulating the leaf histograms for each SIFT vector and
then taking the class with the highest count is bounded by

εve ≤ exp[−8dC(γπ)4]. (3)

Proof: Once again, we will start by computing the effective
margin and sample size for a Bernoulli random variable,
which we will call v. In this case, the value of v is gener-
ated by choosing a random SIFT vector x from the image,
dropping it through the tree τ to find a leaf, choosing one
of the training SIFTs stored at that leaf, and taking the class
label of that training SIFT. Suppose the image belongs to
class 1, what is the probability that v will be labeled as be-
longing to class 1?

With probability π, x is informative, so with probabil-
ity 1

2 + γ it will be routed to a class 1 leaf. There, with
probability 1

2 + πγ it will be labeled as belonging to class
1 (based on Lemma 1). With probability 1

2 − γ, x will be
routed to a class 2 leaf, where it will be labeled as belonging
to class 1 with probability 1

2 − πγ. With probability 1− π,
x is uninformative, so it will be routed to a leaf at random
and be labeled as belonging to class 1 with probability 1/2.
Combining these quantities, we obtain P [v = 1] =

π

(
1
2

+ γ

) (
1
2

+ πγ

)
+ π

(
1
2
− γ

) (
1
2
− πγ

)
+

1
2
(1− π) =

1
2

+ 2(γπ)2

Hence, the effective margin of v is 2(γπ)2, which is very
small. By summing the count vectors for all of the d detec-
tions, the effect (ignoring sampling without replacement)
is to take dC trials of this random variable. Applying the
Chernoff bound completes the proof. �

It is difficult to compare analytically the bounds in equa-
tions 2 and 3. Figure 6 shows the relative performance
of the two classification methods for C = 40, d = 200.
The method of voting evidence performs much better than
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Figure 6. Comparison of error upper bounds for voting evidence
vs voting decisions as a function of πγ for C = 40 and d = 200.

the method of voting decisions. Notice that the model
predicts that neither method would work well in the pure
multiple-instance classification case where exactly one of
the detections is informative. This would correspond to
π = 1/d = 0.005 and πγ = 0.002 for an excellent γ = 0.4.

The above analysis was for a single decision tree. Our
method grows a random forest of T trees. Assuming each
tree is equally accurate, the model predicts that this will
not change the margins of the two methods but only the
effective sample size in each bound. Hence, the bound for
voting the individual classification decisions will become

εvd ≤ exp[−2dT (πγ(1− 2ε))2]

and the bound for combining the counts will become

εve ≤ exp[−8dCT (γπ)4].

The model predicts that combining counts will always out-
perform voting individual decisions. The model can be ex-
tended to more than 2 classes by applying Sanov’s theorem
in place of the Chernoff bounds.

6. Conclusion

We have presented an approach to categorizing highly
articulated objects with large intra-category variations and
small inter-category differences, where the objects may be
only partially visible in images. These challenges have been
addressed by: (1) avoiding unsupervised extraction of a vi-
sual dictionary, and (2) efficient combining of local texture
and global shape properties of objects. The combination of
disparate pieces of visual information is done using a two
stage classifier. The first level is a random forest trained
directly on the descriptors that learns class histograms. We
have mathematically proved that this approach is better than
using individual voting. The second level is a stacked clas-
sifier that combines the information coming from different
sources. Experiments conducted on images of insects, as
well as real-world images demonstrate validity and gener-
ality of our approach.
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