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Abstract

This paper proposes a new energy minimization frame-
work for simultaneous estimation of the bias field and seg-
mentation of tissues for magnetic resonance images. The
bias field is modeled as a linear combination of a set of ba-
sis functions, and thereby parameterized by the coefficients
of the basis functions. We define an energy that depends on
the coefficients of the basis functions, the membership func-
tions of the tissues in the image, and the constants approxi-
mating the true signal from the corresponding tissues. This
energy is convex in each of its variables. Bias field estima-
tion and image segmentation are simultaneously achieved
as the result of minimizing this energy. We provide an ef-
ficient iterative algorithm for energy minimization, which
converges to the optimal solution at a fast rate. A salient
advantage of our method is that its result is independent
of initialization, which allows robust and fully automated
application. The proposed method has been successfully
applied to 3-Tesla MR images with desirable results. Com-
parisons with other approaches demonstrate the superior
performance of this algorithm.

1. Introduction

In quantitative processing and analysis of magnetic reso-
nance (MR) images, major difficulties arise from variations
in intensity due to B1 and BO field inhomogeneities. Such
intensity non uniformities cause intensity variations even
for a single tissue, which may mislead many image analysis
algorithms, such as segmentation and registration. There-
fore, correction for such intensity inhomogeneities is often
a mandatory step before quantitative analysis of the image
data.

Bias correction methods can be broadly categorized into
two classes: prospective methods [19, 16] and retrospec-
tive methods [18, 6, 14, 11, 8]. Prospective methods try to
avoid intensity inhomogeneity in the acquisition process by
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using special hardware or specific sequences. These meth-
ods are able to correct some of the intensity inhomogeneity
caused by the MR scanner. However, they cannot correct for
sources of inhomogeneity that are patient dependant, which
makes them of limited value for clinical use [ 10]. In contrast
to the prospective methods, retrospective methods rely ex-
clusively on the information within the acquired image and
thus can be applied to remove patient dependant effects.

One of the most popular types of methods for bias field
correction are segmentation based approaches [ 18, 7, 4, 11,
8, 9]. In these methods, the tasks of bias field correc-
tion and segmentation are interleaved in an iterative pro-
cess such that they benefit from each other to yield better
results. In [18], Wells et al. developed an approach based
on an expectation-maximization (EM) algorithm for inter-
leaved bias field correction and segmentation. This method
was later improved by Guillemaud and Brady in [4]. How-
ever, methods based on the EM algorithm require a good
initialization for either the bias field or for the classification
estimate [15]. They typically require manual selections of
representative points for each tissue class to perform initial-
ization. Such initializations are subjective and often irrepro-
ducible [7]. Moreover, the final correction and segmenta-
tion are sensitive to the specific choices of initial conditions
[11,15,17].

Based on the EM framework in [ | 8], Leemput et al. [7]
proposed an explicit parametric model of the bias field. In-
stead of manual intervention, their method used a digital
brain atlas that provides a priori probability maps for white
matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF). Although this method is claimed to be more robust
than the method of Wells et al., the initialization of the pa-
rameters remains critical [15]. In [11], Pham and Prince
proposed an energy minimization approach for segmenta-
tion and bias field estimation in which a fuzzy C-means
(FCM) algorithm was used for segmentation. In their pro-
posed energy function, a term was introduced to ensure the
smoothness of the computed bias field. The coefficient of
the smoothing term is, however, sometimes difficult to ad-
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just for desirable results [17]. In addition, this method is
also computationally intensive [2], due to the introduction
of the bias field smoothing term.

In this paper, we propose a new energy minimization ap-
proach for joint bias field estimation and tissue segmenta-
tion. A bias field is modeled as a linear combination of
smooth basis functions, and hence parameterized as the co-
efficients of the basis functions. We define an energy that
depends on the coefficients of the basis functions, the mem-
bership functions of the tissues in the image, and the con-
stants approximating the true signal from the corresponding
tissues. This energy is convex in each of its variables. Bias
field estimation and image segmentation are simultaneously
achieved as the result of minimizing this energy. A salient
advantage of our method is that its result is independent of
initialization, which allows robust and fully automated ap-
plication.

2. Problem Formulation and an Energy Mini-
mization Method

The intensity inhomogeneity in an MR image can be
modeled as a multiplicative component of an observed im-
age described by

I(z) = b(x)J (x) + n(z) (1)

where I(x) is the measured image intensity at location
(voxel) z, J is the true signal to be restored, b is an un-
known bias field, n is additive noise. Ideally, the true signal
J from each tissue should take a specific value of the physi-
cal property being measured (e.g. the proton density for MR
images). Therefore, it can be assumed that the true signal J
is piecewise approximately constant. More specifically, we
assume that there are NV tissues in the region of interest, de-
noted by €2, and that the true signals J originated from the
i-th tissue are approximately a constant ¢;. The bias field b
is commonly assumed to be slowly varying.

It is our goal to estimate the unknown bias field b and
true signal J from the measured image I. In this work, the
bias field is estimated by a linear combination of a set of
basis functions. Let g1, - - -, gps be a set of basis functions
defined on 2. We estimate the bias field by a linear combi-
nation of the basis functions

M
b(w) =D wigk(x) )
k=1

where w, € R, k = 1,---, M, are the combination co-
efficients. Theoretically, any function can be approximated
by a linear combination of a set of basis functions up to ar-
bitrary accuracy [ 12], given a sufficiently large number of
basis functions. In our current implementation, we use or-
thogonal polynomials as the basis functions, i.e. the basis

functions gy, - - - , gas satisfy

/Q gi(2)g; (x)dz = 65 3)

where §;; = 0 fori # j and §;; = 1 fori = j.

The segmentation is given by an optimal estimation of
the true signal J by a piecewise constant map .J, which
takes a constant value ¢; in the region (2; of the i-th tis-
sue. These regions {Q2;}Y, of N tissues form a partition
of the image domain 2 in the sense that U ;Q; = Q and
Q; N = @ fori # j. Thus, the piecewise constant map
J can be written as

N
J(z) = Zczul(x) 4)
i=1
where u;(z) is the membership function of the region 2;
such that a
1, ze€
ui(2) = { 0, else. )
and
N
> wi(z) = 1. (6)
i=1

2.1. Energy Formulation

We formulate the problem of segmentation and bias field
estimation as a task of seeking the best piecewise constant
map J and bias field b such that their product b - J best
fits the measured intensity image I. The piecewise constant
map J can be expressed as J = Zf\il c;u; as in Eq. (4),
while the bias field b is modeled as a linear combination
b = 224:1 wigr as in Eq. (2). Therefore, we define the
fitting error

M N
F= [ 1@ - [P wa @Iy cu@lfd @)
Q k=1 i=1

This fitting error is the proposed energy in terms of the con-
stants ¢y, - - - , cn, the membership functions w1, -- -, up,
and the coefficients w1, - - - , wps. The minimization of this
energy gives the optimal membership functions w1, - -+ ,un
as a segmentation result, while the optimal coefficients
w1, - -, wys of the basis functions define the estimated bias
field.

The scalar constants c1,--- ,cny and w1y, -+ ,wys, and
the functions wq,--- ,un and g1,---,gyn can be repre-
sented in the form of column vectors, i.e. ¢ = (c1,...,cn)7,
w = (w1,..,wym)T, Ux) = (u1(x),...,un(z))?, and
G(z) = (g1(x), -+ ,gm(x))T. Thus, the above energy F'
can be rewritten as

FU.e:w) = [ |12) = W Ga@)( Ul ®)
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From Eq. (5), we have ¢c?U(x) = ¢; for 2 € §;. Thus, the
energy F' can be rewritten as

N
FU,c,w) = Z/Q‘If(x)—(WTG(x))(CTU(JJ))IQdI

N
-y /Q 1)~ (W G@)ald ©)

N
= z) — (WIG(x))e; | Pui(2)dx
- ;/ﬂuw (WTG(a))ex s ()d

From the expression of F' in the last line, it is easy to mini-
mize with respect to the membership functions u 1, - - - , up.

2.2. Energy Minimization

It is worth noting that the energy F'(U, c, w) is convex
in each of its variables. The energy F'(U, ¢, w) can be min-
imized by an iterative process of interleaved minimization
with respect to each variable. The minimizer of F'(U, c, w)
in each variable, U, c, or w, is given below.

Minimization with respect to U. For fixed c and w, we
minimize F'(U, c,w) with respect to U under a constraint

that U = (uq,--- ,yN)T satisfies Eq. (6). It can be shown
that the minimizer U = (4, -+ ,ay)7 is given by

N 1, i =imin(2); .

U () —{ 0. i inm(z). t=1---,N. (10)
where

inin(2) = argmin{|1(z) — (W G(2))ei ).

Minimization with respect to c. For fixed U and w,
there is a unique minimizer of the function F(U,c, w) in
the variable c. This unique minimizer, denoted by ¢ =
(é1,---,en)T, is given by

o= Jo 1(@)b(2)u; (x)dx
' Jo b2 (@)ui(x)de

i=1,---,N. (1)

Minimization with respect to w. For fixed U and c, to
minimize F(U, ¢, w) with respect to w, we take derivative
of F' with respect to w, we get

8_F = —2v + 2Aw
ow
where
v— / 1(2)G () (2)dz,
Q
and

A:/G(x)G(x)TJg(x)dx, (12)
Q

with J(z) = ¢TU. Note that A is an M x M matrix, with
M being the number of the basis functions. It can be shown
that the above matrix A is nonsingular (see below). There-
fore, the linear equation g—fl = —2v 4+ 2Aw = 0O has a
unique solution

w=A"lv (13)

The entire procedure of minimization of the energy
F(U,c,w) is described as below:

Step 1. Initialization of ¢, w and U;;

Step 2. Update c to be ¢ given by Eq. (11);
Step 3. Update w to be w given by Eq. (13) ;
Step 4. Update U to be U given by Eq. (10);

Step 5. Check convergence criterion. If convergence has
been reached, stop the iteration, otherwise, go to Step
2.

2.3. Matrix Analysis for Numerical Issues

The non-singularity of matrix A is verified as the fol-
lowing. We first define h,,(z) £ g, (z) ZN c2u;(x).

i=1"1
Thus, the (m, k) entry of A can be expressed as the inner

product of h,, and hj, given by

Therefore, the matrix A is the Gramian matrix of
hi,---,hyr. By linear algebra [5], the Gramian matrix of
hi,---, has is non-singular if and only if they are linearly
independent. It is easy to see that the above defined func-
tions hy,--- ,hys are linearly independent, which implies
the non-singularity of A.

Numerical stability is an important issue in computing
the inverse matrix A~! in Eq. (13), and may have a signifi-
cant impact on the accuracy of the final result of our method.
In general, the numerical stability of computing an inverse
matrix A~! can be characterized by the condition number
[3] of the matrix A. The condition number of a positive-
definite matrix A is given by

H(A) = Amax(A)/)\min (A)7

where A\pin(A) and A\pax(A) are the minimal and maximal
eigenvalues of matrix A, respectively. The stability is en-
sured when the condition number is bounded by a reason-
ably small number.

For the above defined matrix A in Eq. (12) with the basis
functions g1, - - - , gas satisfying the orthogonality condition
in Eq. (3), we are able to prove that

0 < min{ef} < Amin(4) < Amax(4) < max{c7}
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Therefore, an upper bound of the condition number of A is
provided by
max{c;}

= e
For example, if max;{c;} = 250 and min;{¢;} = 50, by
the inequality (14), we have k(A) < 2550022 = 25. We have
observed that the condition numbers are less than 26.0 for
all the experiments in this paper, which is sufficient to en-
sure the numerical stability of the inversion operation in our
algorithm.

3. Results

In this section, we demonstrate the effectiveness of the
proposed method, especially its robustness to initialization.
To verify the robustness of our method, we randomly gener-
ate different initializations of all the variables U, ¢, and w in
using our method. Experimental results have confirmed that
our algorithm converges to the same result from different
initializations that are generated randomly. Moreover, the
convergence is reached after a small number of iterations.
The typical number of iterations needed for convergence is
between 10 and 20 for most of images.

Our method has been applied to 3-tesla MR images,
which have significant intensity inhomogeneities. We first
show the results of our method for the 3-tesla MR images
in the first column of Fig. 1. The estimated bias fields, the
segmentation results, and bias corrected images are shown
in the second, third, and fourth columns, respectively. As
can be seen from third column, the tissue segmentation re-
sults are quite consistent with the brain anatomy. In the bias
corrected images in the fourth column, the intensities within
each tissue become quite homogeneous.

Figure 1. Results of our method on 3T brain MR images. Column
1: Original images; Column 2: Estimated bias fields; Column 3:
Segmentation results. Column 4: Bias corrected images.

We compared our method with the methods of Wells et

al. [18], Leemput et al. [7]. We tested these three meth-
ods on a synthetic image of circles with intensity inhomo-
geneity (top left in Fig. 2) and an MR brain image with
noise 1%, intensity non-uniformity (INU) 80% (top right
Fig. 2), which was obtained from McGill Brain Web [ 1].
Since the algorithms of Wells et al. and Leemput et al. are
sensitive to the initialization of the parameters (mean, vari-
ances and a priori probability for each tissue), proper ini-
tialization of these parameters is necessary in using their
methods. Unless otherwise specified, the initialization of
the parameters in their methods are obtained from a prelim-
inary segmentation and estimation of the parameters using
the K-means algorithm. When such initializations are used,
the segmentation results of Wells et al.’s method (Figs. 2(c)
and 2(e)) and Leemput et al.’s method (Figs. 2(g) and 2(i))
are acceptable. However, when the initialization of these
parameters are changed, the segmentation results of these
two methods vary significantly, as shown in the two results
in Figs. 2(d), 2(f), 2(h), 2(j). The results of our method for
two randomly generated initializations are shown in the bot-
tom row of Fig. 2. No visible difference can be seen from
the results of our method for the two randomly generated
initializations.

Figs. 3 and 4 show the comparison results for two syn-
thetic images with severe intensity inhomogeneities. The
results of the methods by Wells ef al., Leemput et al., and
the proposed one are shown in the first, second and third
rows, respectively. The estimated bias field, segmentation
results, and bias corrected image are shown in every row.
While it is difficult to visually compare the bias corrected
images, the segmentation results of our method are more
accurate than the other two methods, especially in the lower
part of the image.

To quantitatively evaluate the performance of the algo-
rithms, we use Jaccard similarity (JS) [13] as an indicator
of the segmentation accuracy. The JS between two regions
S1 and S5 is defined as the ratio between the areas of the
intersection and the union of them, namely, J(S1,S52) =
I:Z%ng. To evaluate the accuracy of segmentation, we com-
pute the JS between the segmented region S; by the algo-
rithm and the corresponding region S given by the ground
truth. The closer the JS values to 1, the better the segmen-
tation and bias correction.

We tested the three methods on 30 images from McGill
brain data. For the methods of Wells et al. and Leemput e?
al., we used 20 different initializations of the means, while
the variances and a priori probability are initialized prop-
erly by preliminary estimation of them. The JS values for
WM and GM of the results obtained by the three methods
are shown in Fig. 5. The JS values of the Wells et al., the
Leemput et al. and our method are plotted with red squares,
green circles and blue diamonds respectively. The JS val-
ues of our method for the 20 different initializations show
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Figure 2. Results of the method of Wells et al., the method of
Leemput et al. and our method with two different initializations.
The segmentation results with good guess are shown in columns
1 and 3; the segmentation results without good guess are shown
in columns 2 and 4. The results of the methods of Wells et al.,
Leemput et al., and the proposed method are shown in rows 2,34,
respectively.

no visible difference in Fig. 5, which demonstrate the inde-
pendence of initialization of our method. By contrast, there
is large variability in the JS values for the results obtained
by the methods of Wells er al. and Leemput et al. for 20
different initializations, as can be seen in Fig. 5.

We have applied our method to 3D MR images. Fig. 6
shows the result of our method for a 3-tesla 3D MR im-
age. To visualize the results, we select four sagittal slices
as shown in the first row of Fig. 6. The corresponding es-
timated bias fields, final segmentation results and corrected
images are shown in the second, third, and fourth rows re-
spectively. The intensities with each tissue become quite
homogeneous in the bias corrected images. Meanwhile, the
segmentation results show high agreement with the brain
anatomy.

4. Conclusion

In this paper, we have presented a new energy minimiza-
tion framework for simultaneous estimation of the bias field
and segmentation of tissues for magnetic resonance images.

Figure 3. Comparison results for a synthetic image shown in the
fist column. The estimated bias fields, segmentation results, and
bias corrected images are shown in the second, third, and fourth
columns, respectively. The results of the methods of Wells et al.,
Leemput e al., and the proposed method are shown in rows 1,2,3,
respectively.

.

Figure 4. Comparison results for a synthetic image shown in the
fist column. The estimated bias fields, segmentation results, and
bias corrected images are shown in the second, third, and fourth
columns, respectively. The results of the methods of Wells et al.,
Leemput et al., and the proposed method are shown in rows 1,2,3,
respectively.

We provide an efficient iterative algorithm for energy min-
imization, which converges to the optimal solution at a fast
rate. A salient advantage of our method is that its result is
independent of initialization, which allows robust and fully
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Figure 5. Test of sensitivity to initialization for our method and the
methods of Wells et al. and Leemput e al. The x-axis represents
30 images, and the y-axis represents the JS values for WM (left)
and GM (right) of the three methods for 20 different initializations.

Figure 6. Sagittal view of the 3D segmentation and bias correction
results. Row 1: Original images. Row 2: Estimated bias fields.
Row 3: Segmentation results. Row 4: Bias corrected images.

automated application. The proposed method has been suc-
cessfully applied to 3-Tesla MR images with desirable re-
sults. Comparisons with other approaches demonstrate the
superior performance of this algorithm.
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