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Abstract

Detection and tracking of moving vehicles in airborne

videos is a challenging problem. Many approaches have

been proposed to improve motion segmentation on frame-

by-frame and pixel-by-pixel bases, however, little atten-

tion has been paid to analyze the long-term motion pat-

tern, which is a distinctive property for moving vehicles

in airborne videos. In this paper, we provide a straight-

forward geometric interpretation of a general motion pat-

tern in 4D space (x, y, vx, vy). We propose to use the Ten-

sor Voting computational framework to detect and segment

such motion patterns in 4D space. Specifically, in airborne

videos, we analyze the essential difference in motion pat-

terns caused by parallax and independent moving objects,

which leads to a practical method for segmenting motion

patterns (flows) created by moving vehicles in stabilized air-

borne videos. The flows are used in turn to facilitate detec-

tion and tracking of each individual object in the flow. Con-

ceptually, this approach is similar to “track-before-detect”

techniques, which involves temporal information in the pro-

cess as early as possible. As shown in the experiments,

many difficult cases in airborne videos, such as parallax,

noisy background modeling and long term occlusions, can

be addressed by our approach.

1. Introduction

Detecting and tracking multiple moving vehicles from

an airborne camera is a challenging problem and has drawn

significant attention. As the size of vehicles is relatively

small from an airborne view, appearance based detectors

suffer from lack of resolution and blurry images. The

motion-based detection approach relies on the stabilization

of the camera motion using parametric models. Moving ob-

jects are defined as the areas that have not been stabilized.

This method works well when the scene can be considered

(a) (b)

Figure 1. One parallax example (a) a typical scenario from a UAV

camera (b) the residual image after subtracting background

planar, or when the motion of the camera is pan/tilt/zoom.

Otherwise, 3D depth in the scene produces pixel displace-

ment, which cannot be accounted for by the global para-

metric model, usually termed as parallax. Figure 1 shows

one example of noisy motion detection caused by parallax,

which severely affects object detection and tracking. Be-

sides parallax, many other cases affect detection and track-

ing in airborne videos, such as abrupt illumination changes,

registration errors and occlusions.

Many approaches have been proposed to improve mo-

tion detection and tracking on frame-by-frame and pixel-

by-pixel bases, e.g. global illumination compensation [9],

parallax filtering [10], or detection using contextual infor-

mation [4, 11]. No much attention has been paid on an-

alyzing the long-term motion pattern of moving objects,

which is a distinctive property for moving vehicles in air-

borne videos. Conceptually similar to “track-before-detect”

techniques, we aim to involve temporal information in pro-

cess as early as possible. Indeed, detection and tracking are

coupled: if perfect detection is given, tracking becomes rel-

atively straightforward, on the other hand, if we know the

motion and trajectory of an object, detection is easier. Thus,

in our approach, we first analyze the motion pattern of ob-

jects over a long time period before segmenting individual

objects, and use the motion pattern in turn to facilitate the

detection and tracking in each frame. By posing the detec-

tion and tracking task in this coupled framework, we can
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deal with many difficult cases that challenge existing detec-

tion and tracking methods. Moreover, we do not assume any

particular motion model of the moving objects, but simply

assume objects are moving in a smooth way, which is a rea-

sonable assumption for moving vehicles in airborne videos.

To analyze motion pattern, we first provide a clear defi-

nition in a 4D space, (x, y, vx, vy), and we further provide

a geometric interpretation of a motion pattern in this 4D

space. According to this geometric property, we propose

to use Tensor Voting [12] to detect and segment motion pat-

terns for general objects from noisy input data. Specifically,

we analyze the motion patterns in airborne videos. Further-

more, we propose to use a two-step voting to segment mo-

tion patterns (flows) created by moving vehicles. The idea

of defining voting strength in Tensor Voting is used to stitch

fragmented flows caused by occlusions. Finally, segmenta-

tion and tracking of each object is performed in each flow

with local kinematics and environmental constraints (entries

and exits).

The key contributions of our approach are as follows.

First, we provide a straightforward geometric interpreta-

tion of motion pattern in the 4D space and propose to use

the Tensor Voting computational framework to detect and

segment motion patterns. Second, we propose a practical

method to use general motion pattern to facilitate segmen-

tation, tracking and reacquisition of moving vehicles in air-

borne videos. This method solves many cases that are diffi-

cult to solve on a frame-by-frame basis.

The rest of this paper is organized as follows. In Section

2, we discuss related work in motion pattern analysis and

tracking in airborne videos. In Section 3, we present the

overview of our approach. In Section 4, we present the gen-

eral motion pattern detection and a special case for airborne

videos. Section 5 introduces detection and tracking of ob-

jects in motion patterns. Experimental results are shown in

Section 6 followed by conclusions at the end.

2. Related work

Detecting and tracking multiple moving vehicles from

an airborne camera is a challenging problem. Some exist-

ing methods and systems [13, 1] have demonstrated good

results in planar (or quasi-planar) scenes where good mo-

tion segmentation results can be achieved. A scene that

contains strong parallax is still difficult for existing meth-

ods. Some work has been proposed to deal with the par-

allax problem. One way is to explicitly recover the depth

of the scene, and then to remove everything far above the

ground plane [11]. Another approach to remove parallax is

to characterize the parallax and motion by using geometry

constraints as in [10], where epipolar and relative depth con-

straints are applied to filter parallax without explicitly esti-

mating the depth. This approach may fail on some degen-

erate cases. More importantly, parallax filtering in a frame-

by-frame and pixel-by-pixel manner is very noisy [10].

Contextual information has been applied to improve de-

tection, tracking and reacquisition, as in [11, 14, 15]. In

[14], a color-based scene segmentation is used to determine

the regions of foliage, grass and road etc., thus to remove

false alarms in motion detection. In [11], geo-registration,

depth map and GIS information with road network are used

to remove false alarms out of road. In our approach, the mo-

tion patterns created by vehicles are flows, which are similar

to the road concept but work for unstructured environment.

In [15], Ali et al. originally proposed to use objects that are

moving in a similar context to predict and reacquire objects

after long term occlusion. This method assumes that low

level motion detection and tracking have been solved and

the reacquisition is performed at the object level. The errors

in low level motion segmentation under strong parallax sit-

uation are not considered in this method. In our approach,

we aim to use the context information to improve both low

level motion segmentation and high level reacquisition even

when there is only one single object in the scene.

Motion pattern analysis before tracking each object

has started to get attention in recent years, especially for

crowded scenarios [3, 5, 16, 17], where tracking each indi-

vidual is very difficult. In [16], Lagrangian Particle Dynam-

ics is used to segment high density crowd flows and further

track each marked objects as in [3]. In [5, 17], a cluster-

ing based method is proposed to segment and represent the

dense motion flow in crowded scenes. These methods all

apply pre-filtering or pre-clustering steps (median filters in

[16], Gaussian ART in [17]) remove the outliers. As the

scene may contain different motion patterns at one location

within a period of time, (such as at a road intersection), av-

eraging or filtering before knowing the local structure of

motion patterns may destroy such structure. Our method

analyzes motion patterns and filters out noise in input data

under a unified computational framework.

Our work is also related to Min’s work in [6], which aims

to segment each motion region using Tensor Voting in a 5D

space (x, y, vx, vy, t). However, the goal to segment each

moving region is too difficult to achieve due to the lack of

samples in a large voting space. In our approach, since the

time dimension collapses, objects moving in a similar man-

ner at different times share the same motion pattern, and

thus reinforce the motion pattern in the 4D space.

3. Overview

The pipeline of our detection and tracking approach con-

tains three phases, shown in Figure 2. In the first phase,

affine motion compensation and detection are applied to es-

timate the transformation between consecutive frames and

model dynamic background for each frame. Residual pixels

after motion compensation account for independent moving

objects, noise in motion compensation, or parallax. Before
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Figure 2. Overview of the proposed approach

segmenting moving objects from a residual image at each

frame, in the second phase, we analyze the general motion

pattern created by moving vehicles and segment their mo-

tion patterns (flows) over a long period of time. In the third

phase, we detect moving objects in the flow and associate

them according to flow dynamics and appearance similar-

ity. Following the concept of “track-before-detect”, our ap-

proach involves temporal information as early as possible,

and in return uses the motion pattern to improve detection

and tracking in each frame.

The affine motion detection framework [7] initially ex-

tracts a number of feature points in each frame. Then

the feature points in consecutive frames It and It + 1 are

matched by evaluating the cross-correlation of local win-

dows around feature points. A 2D affine motion model

At+1,t is robustly estimated by a RANSAC-based scheme.

The affine motion model At+1,t globally compensates for

the motion from It to It+1. This affine model is not only

used for motion compensation and detection, but also to

warp motion vectors from different frames to a mosaic

space for motion pattern analysis. The pixels that do not

satisfy this motion model are classified as residual pixels.

In order to detect and segment the motion flow caused by

moving vehicles, we first compute optical flows on all the

residual pixels between each frame and its stabilized next

frame. We further warp these optical flows into a mosaic

space, i.e. common reference coordinates, where the cam-

era motion is compensated. Then, we cast the warped opti-

cal flows into a 4D space, and use Tensor Voting to analyze

their geometric property and filter out parallax and noise.

For each flow, we use a meanshift based method [3] to find

its endpoints (entry and exit). Due to long term occlusions,

the detected flow may be fragmented. We employ the Hun-

garian [2] algorithm to link the endpoints of the flows ac-

cording to motion smoothness.

Given the flow information, we compute the local dy-

namics at each location in the flow. To segment each ob-

ject, we first use the motion history image (MHI) method

[13] to generate an initial segmentation, and then associate

segmented regions according to their appearance similarity

and flow dynamics to generate tracklets. The Hungarian al-

gorithm is applied again to associate tracklets to form con-

sistent long tracks. The end (entry and exit) information of

a flow is imposed as environmental constraints when asso-

ciating tracklets.

4. Motion Pattern Analysis

In this section, we first address the general motion pat-

tern analysis, and then discuss the specific property of

the motion pattern created by moving vehicles in airborne

videos.

4.1. Motion Flow and Pattern

Consider a 2D point P smoothly traversing in a spatio-

temporal space. By projecting the motion of the point in a

4D space, (x, y, vx, vy), where (x, y) is the location of the

point and (vx, vy) denotes the time derivatives of motion

along x and y axes, we obtain a fiber (dimensionality is one)

in the 4D space that represents the motion characteristic of

that point. If a set of 2D points (e.g. on the same object)

are moving in a similar way, a bundle of fibers form a flow.

Many types of object motions can be represented by a flow.

A single moving vehicle or a convoy of vehicles observed

from an airborne camera are such typical cases.

Generally, we define the motion pattern in the 4D space

as a set of motion vectors,

F = {(x, y, vx, vy), (x, y) ∈ R2}. (1)

Without loss of generality, in one motion pattern, one mo-

tion vector (vx, vy) is assigned at one location (x, y), i.e.

(vx, vy) is a function of (x, y), (vx, vy) = F(x, y). Note

that there may exist multiple motion patterns at the same lo-

cation, (e.g. at a road intersection). Objects whose motion

complies with the same motion pattern are called objects

moving in the same motion context. A motion flow can be

regarded as one particular type of motion pattern.

The motion pattern defined in Eq.1 essentially describes

the general motion characteristics of objects over a pe-

riod of time. In practice, the motion estimation of one

object at a time inevitably contains noise. The estimated

motion vectors in a motion pattern F can be written as

f = (x, y,F(x, y) + e), where e accounts for the noise in

motion estimation. We aim to analyze the general motion

pattern from multiple noisy motion vectors over time, and

then use this information to facilitate detection and tracking

of each object in the motion pattern.

The essential property of a motion pattern is that each

smooth motion pattern corresponds to a smooth sheet in the

4D space, i.e. the local dimensionality is 2. It is easy to

know that the dimensionality is 2, since

• the projection of a motion pattern in (x, y) space is 2

in non-degenerate cases, thus the dimensionality in the

4D space is no less than two;
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Figure 3. Illustration of a motion flow, which has a sheet property

in 4D space

• at most one motion vector is assigned at one location,

thus the local dimensionality is no more than two.

According to the smooth motion assumption, the normal on

the sheet created by one motion pattern changes smoothly

and different motion patterns produce discontinuity be-

tween them in 4D space. Noise caused by erroneous optical

flows do not form a coherent sheet with local smoothness.

One example of a simulated flow is shown in Figure 3.

4.2. Tensor Voting and Motion Pattern Segmenta­
tion

Suppose we have a set of noisy input samples in the 4D

space, structures we aim to find in this space are smooth 2D

sheets. We analyze vectors that span the normal and tangent

space at each point to infer the geometric structure while

filtering noise out, and use local smoothness to segment one

structure from others. We use Tensor Voting to achieve this

task.

Tensor Voting [12] can be regarded as an unsupervised

computational framework to estimate geometric informa-

tion. Tensor voting has been proved capable of estimating

structures in N-D space with very noisy input data. In Ten-

sor Voting framework, the local geometric information at

one point in N-D space is encoded in a symmetric, nonneg-

ative definite matrix. The local geometry can be derived

by examining the eigensystem. Recall that a tensor can be

decomposed as

T =

N∑

i=1

λieie
T
i =

N−1∑

i=1

(λi − λi+1)

i∑

k=1

ekeT
k +λN

N∑

k=1

eie
T
i

(2)

where {λi} are the eigenvalues arranged in descending or-

der, {ei} are the corresponding eigenvectors, and N is the

dimensionality of the input space. The decomposition in

Eq.2 provides a way to interpret the local geometry. The

largest gap between two consecutive eigenvalues, λi−λi+1,

indicates the dimensionality d,

d = arg max
i

(λi − λi+1) (3)

The largest difference value λd − λd+1 is the saliency of

the dimensionality. In order words, a geometric structure,

whose normal space is d-dimension and the tangent space

is (N − d)-dimension, is the most salient interpretation ac-

cording to T . The corresponding eigenvectors {e1, ..., ed}
span the normal space of the structure and ed+1, ..., eN span

the tangent space. In our case, we are interested in the struc-

tures whose normal space’s dimensionality is 2 in the 4D

space.

Given the input data, a set of 4D motion vectors, {fi},

we encode each sample as a ball tensor, which indicates no

orientation, since at the beginning we have no knowledge of

the local structure at a point. Each fi receives a vote Tj→i

from its neighbors fj in 4D space. The voting result at one

point, which indicates its geometric property, is obtained by

adding up all the incoming votes from its neighbors. The

vote from a voter fi to a receiver fj encodes the tensor at fi,

the orientation and the distance from fi to fj . The result of

this process can be interpreted as a local, nonparametric es-

timation of the geometric structure at each sample position.

After accumulating all cast tensors, the local geometry can

be interpreted according to of Eq.3.

In our motion pattern segmentation, we take original op-

tical flows computed in multiple frames as input, without

any pruning or clustering. After the voting process, we

examine the cast tensor T and keep the structures of di-

mensionality 2 with saliency larger than a threshold. Af-

ter this tensor voting process, most of the structures created

by noise are filtered out. Since, at one 2D location (x, y),
there may exist multiple motion vectors that belong to the

same motion pattern, we use the average of the motion vec-

tors to represent the estimated motion pattern. Note that,

we only average motion vectors on the same sheet in the 4D

space. This averaging is essentially different with prefilter-

ing, since it is performed after we have the knowledge of

local structures and filter noise out.

After detecting the desired structure and filtering out the

noise, we use a flood-fill algorithm in 4D space to segment

each motion pattern. According to the smooth motion as-

sumption, the sheet formed by one motion context has local

smoothness and discontinuity exists between sheets caused

by different motion patterns. The neighbor samples in 4D

space that have similar normal are assigned the same label.

We use principle angles [8] to measure the similarity be-

tween two normal spaces. Two examples of motion pattern

are shown in Figure 4. The video used in the second ex-

ample is at a road intersection, where exist multiple motion

patterns at some location. Directly smoothing in the (x, y)
space will destroy such motion patterns.

4.3. Motion Pattern Analysis for Airborne Videos

We have discussed the properties of general motion pat-

terns in 4D space. Now, we analyze motion patterns in air-

borne videos, where we aim to find those created by moving

vehicles. The pixels that do not satisfy the global motion
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(a) (b) (c)

(d) (e) (f)

Figure 4. One example of motion pattern segmentation (a)(d) scenes with traffic flows (b)(e) motion pattern shown in (x, y, vx) space (c)(f)

segmentation of motion patterns

model are classified as residual pixels. The residual pixels

account for noisy background modeling, independent mo-

tion, and parallax. We compute optical flows on the resid-

ual pixels between the frame It and its stabilized next frame

At+1,tIt+1. Then, the optical flow is warped to a common

reference frame, which we call the mosaic space. We select

the first frame as the reference frame. If geo-registration

is available, the geo-map can also be selected as a mosaic

space. The global camera motion is compensated in the

mosaic space, where motion pattern analysis is performed.

Residual pixels caused by noise do not form a consistent

motion pattern, thus can be filtered by examining their di-

mensionality as discussed in Section 4.2.

The essential difference between motion patterns created

by parallax and by moving vehicles is as follows. After

principal motion estimation, the motion pattern of mov-

ing vehicles is generated by the intrinsic properties of the

objects and static environmental constraints on the ground

plane (e.g. road, or non-road area), which is independent of

camera motion. The motion pattern of parallax is caused

by the camera motion, as each motion vector on a 3D struc-

ture should be along the epipolar line that is determined by

camera’s translation. According to the relative affine struc-

ture [18], the projection pt of a 3D point P on It can be

decomposed as,

pt = At,rpr
︸ ︷︷ ︸

(1)

+ ket
︸︷︷︸

(2)

(4)

where pr is the projection of P in the reference frame, k is

a scalar, which is independent of the camera pose at time t,

and et is the epipole at time t. The first term in Eq.4 is com-

pensated for by the affine motion. From the second term, we

can see the motion of parallax (ket) is indeed determined

by the camera motion. Interestingly, when the epipole is

moving in a non-smooth way, the motion of parallax can-

not form smooth patterns, thus non-smooth epipole motion

actually helps us to remove parallax.

When the camera is moving in a smooth way, however,

the parallax can still form a smooth motion pattern. In other

words, it also exhibits as 2D structures in the 4D space.

Specifically, in airborne videos, the motion patterns of mov-

ing vehicles forms flows. Such flow shows a fiber property

(dimensionality is 1) on a larger scale. This property is due

to the fact that the motion range of a vehicle over time is

much larger than its 2D dimensions. This is derived from

the characteristics of moving vehicles in airborne videos. In

order to examine the geometric property at a larger scale, we

can simply enlarge the voting scale. In our experiments, we

observe that, when we enlarge the scale of voting, the mo-

tion field caused by a small 3D structure becomes a point

tensor or it remains a sheet for a large 3D structure. Thus,

the procedure of segmenting the motion field created by

moving vehicles is: first vote at a small scale and keep only

the 2D structures to remove noise, and then vote at a large

scale, keep only the 1D fiber structures. In practice, instead

of directly enlarging the voting scale, we down-sample the

4D space to achieve an efficient implementation. We show

one example of motion flow detection in an airborne video

in Figure 5. There exists strong parallax (a water tower) in

this video. After the first scale voting, some motion patterns

created by the parallax still remains, shown in Figure 5(a).

After changing the voting scale, the parallax motion pattern

is filtered out, shown in Figure 5(b).

4.4. Stitching Flows

The motion flow created by moving vehicles may be

fragmented due to occlusion. Thus, we propose a method to

stitch them up. After we find each flow, we randomly place

several “floats” (square 2D Gaussian kernels) in the flow

and apply the meanshift like method used in [5, 3] along
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(a) (b)

(c)

Figure 5. Voting at two scales to detect motion patterns by moving

vehicles (a) Tensor Voting at a small scale and keep sheets (b)

second step voting at a larger scale and keep fibers (c) the mosaic

image (space) used for warping optical flows

both positive and negative directions, the “floats” terminate

at the ends of the flow. Then, we cluster termination points

that are consistent with the ends found by shape analysis.

Note that we use clustering only for obtaining a more ac-

curate end location, but the clustering method [5] cannot be

used to filter out motion field of parallax. After we have

the ends (both entry and exit) of the flows, we use a vote-

casting method inspired from Tensor Voting to calculate the

motion consistency between flows as shown in Figure 6.

Let O denote one end of a flow, ~N denote its normal,

which is known after we find the flow, and we want to com-

pute its motion consistency with another end from a dif-

ferent flow P . The motion consistency should consider

both orientation and strength. As can be seen in Figure6,

the ideal orientation ~NO→P (gray arrow starting from P)

is given by drawing a big circle whose center C is in the

line of ~N and it passes both O and P while preserving the

normal ~N . The ideal orientation ensures the smoothest con-

nection between two ends, O and P . The actual normal at

Figure 6. Computing motion consistency between two flows, de-

rived from the concept of casting vote in tensor voting

P is ~NP . The consistency between O and P is computed

by the following function:

S(O, P ) = exp(−|s|2 − ck2)( ~NO→P · ~NP ) (5)

Here, |s| is the arc length, k is the curvature, c is the decay

rate. Note that besides the introduction of the dot product,

the scale σ in Tensor Voting’s decay function [12] is gone,

since there is no concept of neighbors, i.e. any two ends

from different flows within a gating threshold can be asso-

ciated. After we calculate the motion consistency between

each pair of flow ends, we use the Hungarian algorithm [2]

to find the best associations.

5. Detection and Tracking in the Flow

Given the flow information, detection and tracking be-

comes much easier. First, most of the residual pixels caused

by noise and parallax have been filtered out. Second, the

local dynamics in the motion field are known. Third, the

entries and exits of flows, which actually reflects the envi-

ronmental information, can be imposed during the data as-

sociation: both termination and birth of a track are captured

by this information. Note that one flow may contain multi-

ple moving vehicles moving in sequence or in parallel, but

their motion should comply with the motion pattern.

In residual images along the flows, we adopt the motion

history image method proposed in [13] to segment indepen-

dent motion regions. Each segmented region is represented

as an oriented rectangle. An association score between re-

gions Ri and Rj from neighboring (|i − j| ≤ δ) frames en-

codes both appearance similarity and consistency with the

local motion field as:

pij = CSije
−

|R(i)−R̄j(i)|+|R(j)−R̄i(j)|

2 (6)

The appearance similarity Sij is simply the normalized cor-

relation between two image patches, R̄j(i) is the predicted

location from j to i by using |i − j| steps of mean shift

(the direction is sign(i − j)) in the motion field. Accord-

ing to this similarity measure, we aggregate these isolated

regions from different frames into tracklets. We further fil-

ter out isolated regions and very short tracklets that come

from noisy motion segmentation. For a pre-filtered track-

let, we use the average image patch of the oriented rect-

angles as its appearance template. A local translation re-

laxing is used to find the best matching location for av-

eraging appearance template. The motion of a tracklet is

encoded in its start and end points. The motion consis-

tency between tracklets (a start with a end) is computed as

in Eq.5. Then, we apply the Hungarian algorithm to asso-

ciate tracklets into tracks. Here, we encode the entry and

exit information of a flow in the utility matrix used in the

Hungarian algorithm. Suppose there are n tracklets in the
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pool, the utility matrix A2n×2n is a matrix of size 2n× 2n.

A(1,··· ,n)×(1,··· ,n), except its diagonal elements, contains

the similarity between any pair of tracklets, the diagonal of

A(n+1,··· ,2n)×(1,··· ,n) stores the termination probability of

each tracklet, which is computed according to the distance

between the end point of a tracklet and the exit of the flow;

the diagonal of A(1,··· ,n)×(n+1,··· ,2n) stores the birth prob-

ability of each tracklet, which is computed according to the

distance between the start point of a tracklet and the entry of

the flow. All the other elements in A are zero. By expand-

ing the similarity matrix, we impose the environmental in-

formation in the tracklet association to avoid the fragmented

tracks in the middle of a flow. Note that the tracklet asso-

ciation is performed among flows that have been stitched in

the motion pattern analysis phase.

6. Experimental Results

Results on two videos (around 1800 frames for each

video) are shown in this section, we have submitted sup-

plementary materials for more visual results. In these two

videos, we show that some difficult problems (including

parallax, noise in background modeling and long term oc-

clusions), that challenge the existing UAV tracking systems,

can be addressed by our approach. We also demonstrate our

approach can reacquire objects across occlusions and can

maintain track identifications for the case of leaving and re-

entering the field of view (FOV) of the camera. Our ap-

proach combines segmentation, tracking and reacquisition

in a unified framework. For all the experiments, we use the

KLT optical flow method. Optical flows are computed only

at the residual pixels. To segment the flow, we need to pro-

vide two scales in Tensor Voting for detecting object motion

pattern. Those are automatically determined by the number

of neighbors that one sample should have at each scale in

4D space.

In the first video shown in Figure 7, moving vehicles of-

ten leave and re-enter the FOV of the camera. Also, the

vehicles in this video undergo a “U-turn” motion, which

is hard to describe with a parametric motion model. After

computing the flow dynamics and stitching the flows, then

identifications of objects that fall out of the FOV are main-

tained consistently in the whole video. The second video

shown in Figure 8, contains strong parallax and a convoy

of vehicles passing through a forrest where long term oc-

clusions occur. This video challenges existing motion seg-

mentation and tracking methods. The residual pixels that

do not belong to valid motion patterns are shown in red in

Figure 8. Such regions caused by parallax, which some-

times form larger regions than moving objects, cannot be

filtered out by morphological operations or the motion his-

tory image method. By flow stitching, the long occlusion is

correctly handled in the forest video. In both Figure 7 and

Figure 8, we show the estimated the motion field after flow

segmentation in both the mosaic space and the image space.

7. Summary

We have proposed an approach to detect and segment

general motion patterns (for static cameras, or moving cam-

eras) with noisy input data by using Tensor Voting in the 4D

space (x, y, vx, vy). An straightforward geometric interpre-

tation of a motion pattern in this 4D space is provided. Also,

we presented a method to segment flows created by moving

vehicles in airborne videos and in turn facilitate the detec-

tion and tracking of each object in the flow.
Our framework has no confliction with parallax filtering

method using geometric constraints. A combined solution
can be achieved easily. Our method currently uses a rel-
atively long sequence to detect motion patterns. We will
apply sliding window techniques to leverage the delay is-
sue. In the future, we will investigate video retrieval and
abnormal event analysis using this motion pattern analysis
instead of tracking each individual object.
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