(©2000-2004 IEEE. Personal use of this material is per mitted.
However, permission to reprint/republish this material for ad-
vertising or promotional purposesor for creating new collective
works for resale or redistribution to serversor lists, or to reuse

any copyrighted component of thiswork in other works must be
obtained from thel EEE.

See http://www.ieee.or g/copyright/policies.ntm for more infor-
mation.

http://www.ieee.org
http://www.ieee.org
http://www.ieee.org/copyright/policies.htm

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

583

Watersheds in Digital Spaces: An Efficient
Algorithm Based on Immersion Simulations

Luc Vincent and Pierre Soille

Abstract— In this paper, a fast and flexible algorithm for
computing watersheds in digital grayscale images is introduced.
A review of watersheds and related notion is first presented, and
the major methods to determine watersheds are discussed. The
present algorithm is based on an immersion process analogy,
in which the flooding of the water in the picture is efficiently
simulated using a queue of pixels. It is described in detail and
provided in a pseudo C language. We prove the accuracy of
this algorithm is superior to that of the existing implementations.
Furthermore, it is shown that its adaptation to any kind of digital
grid and its generalization to n-dimensional images and even to
graphs are straightforward. In addition, its strongest point is that
it is faster than any other watershed algorithm. Applications of
this algorithm with regard to picture segmentation are presented
for MR imagery and for digital elevation models. An example
of 3-D watershed is also provided. Lastly, some ideas are given
on how to solve complex segmentation tasks using watersheds on
graphs.

Index Terms—Algorithm, digital image, FIFO structure, graph,
grid, mathematical morphology, picture segmentation, water-
sheds.

I. INTRODUCTION

ATERSHEDS are one of the classics in the field of

topography. Everybody has heard for example about
the great divide, this particular line which separates the U.S.A.
into two regions. A drop of water falling on one side of this
line flows down until it reaches the Atlantic Ocean, whereas
a drop falling on the other side flows down to the Pacific
Ocean. As we shall see in further detail later, this great divide
constitutes a typical example of a watershed line. The two
regions it separates are called the catchment basins of the
Atlantic and the Pacific Oceans, respectively. The two Oceans
are the minima associated with these catchment basins.

Now, in the field of image processing and more particularly
in Mathematical Morphology (MM) [30], [40], [45], grayscale
pictures are often considered as topographic reliefs. In the
topographic representation of a given image I, the numerical
value (i.e., the gray tone) of each pixel stands for the eleva-
tion at this point. Such a representation is extremely useful,
since it first allows one to better appreciate the effect of a
given transformation on the image under study. We know

Manuscript received February 4, 1990; revised January 24, 1991. Recom-
mended for acceptance by S. L. Tanimoto.

L. Vincent is with the Division of Applied Sciences, Harvard University,
Pierce Hall, Cambridge, MA 02138, on leave from the Center for Mathe-
matical Morphology, Ecole des Mines de Paris, 35 Rue Saint-Honore, 77305
Fontainebleau Cedex, France.

P. Soille is with the Center for Mathematical Morphology, Ecole des Mines
de Paris, 35 Rue Saint-Honoré, 77305 Fontainebleau Cedex, France.

IEEE Log Number 9100083.

for example that an opening removes some peaks and crest
lines, whereas a closing tends to fill in basins and valleys.
Furthermore, thanks to this representation, such notions as
minima, catchment basins and watersheds can be well defined
for grayscale images. As we shall see throughout this paper,
they turn out to be extremely important and useful.

Quite naturally, the first algorithms for computing wa-
tersheds are found in the field of topography. Topographic
surfaces are numerically handled through digital elevation
models (DEM’s). These are arrays of numbers that represent
the spatial distribution of terrain altitudes. The most commonly
used data structure for DEM’s is the regular square grid in
which available elevations are equally spaced in two orthog-
onal directions. Automated watershed extraction from DEM’s
has received increasing attention in the past few years [9],
[36], [28], [1]. The first step of most published algorithms is
a parallel procedure performing local operations defined on a
3 x 3 window. This allows one to extract potential dividing
pixels. In a second step, the extracted pixels are connected into
geomorphological networks. However, the very local approach
of the first step and the lack of objective rules to perform the
second one usually lead to poor results [43].

Meanwhile and apart from these researches in digital to-
pography, the above notions were studied in the field of
image processing. The introduction of the watershed trans-
formation as a morphological tool is due to H. Digabel and
Ch. Lantuéjoul {11]. Their data were piles of binary images
representing successive thresholds of a bituminous surface’s
relief whose drainability was to be studied. Later, a joint work
of C. Lantuéjoul and S. Beucher led to the “inversion” of
this original algorithm in order to extend it the more general
framework of grayscale images [3], [4]. Watersheds were then
approached theoretically by F. Maisonneuve [27] and used
in numerous grayscale segmentation problems. They are cur-
rently being studied from theoretical, practical, and algorithmic
points of view. When combined with other morphological
tools, the watershed transformation is at the basis of extremely
powerful segmentation procedures [49].

Extracting watersheds from digital pictures is far from being
an easy task. As available algorithms for computing the water-
shed transformation are either excessively slow or inaccurate
(see Sections II-D and IV-B), the tremendous practical interest
of this transformation is not as obvious as it should be. The
purpose of the present paper is to introduce an efficient and
completely new implementation of watersheds (see also [50]).
Roughly speaking, it is based on a sorting of the pixels in the
increasing order of their gray values, and on fast breadth-first

0162-8828/91/0600-0583$01.00 © 1991 IEEE

584 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

scannings of the plateaus enabled by a first-in-first-out type
data structure. Our algorithm turns out to be hundreds of times
faster than some classical ones on conventional computers
(see Section IV). It is also more accurate and behaves well in
all the particular pixel configurations where many algorithms
produce incorrect results (see Section IV-B). Furthermore, the
present algorithm is very general: its adaptation to any kind of
underlying grid (4-, 6-, 8-connectivity . . .) is straightforward,
and it can be fairly easily extended to n-dimensional images
and even to graphs.

For the sake of clarity, Sections II and III only deal with
watersheds for two-dimensional pictures. After some defini-
tions concerning the objects which are considered in this
paper, some reminders about watersheds and related notions
are given in Section IL. In particular, two different definitions
of catchment basins and watersheds are brought to the fore.
The existing algorithms for determining watersheds in digital
images are then reviewed and discussed. Section III is devoted
to the introduction of our implementation, here decomposed
into two steps: an initial sorting and a flooding step. The em-
phasis is put on the accuracy of the results. The efficiency and
advantages of our algorithm are then discussed in Section IV
and opposed to the existing implementations. The rest of the
paper is concerned with some of its possible applications:
its interest with respect to picture segmentation is proved
and illustrated on an example taken from the field of MR
imagery. The algorithm is then applied to digital elevation
models. Lastly, it is extended to other digital spaces: three-
dimensional images are first considered and second, the graph
version of our algorithm is used for the hierarchical description
and segmentation of grayscale images.

II. DEFINITION AND COMPUTATION OF WATERSHEDS

A. Basic Definitions

It may seem easy to define watersheds on digital pictures,
since this notion is a quite natural one. However, when looking
closer at it, it turns out that there exist many particular cases,
so that this definition task must be achieved very carefully.

Let us consider a two-dimensional grayscale picture I whose
definition domain is denoted Dy C Z2. I is supposed to take
discrete (gray) values in a given range [0, N], N being an
arbitrary positive integer:

p — I(p). W

I<D1 c?® - {0,1,---,N}
In the following, we equally consider grayscale images as
numerical functions or as topographic reliefs.

Let G denote the underlying digital grid, which can be of
any type: a square grid in four or eight connectivity, or a
hexagonal grid in six connectivity. G is a subset of Z? x Z7.

Definition 1: A path P of length [between two pixels p and
q in picture I is a (! + 1)-tuple of pixels (pg,p1, -+, p1—1,P1)
such that po = p, pi = ¢, and Vi € [1,1], (pi—1,p:) € G.

In the following, we denote !(P) the length of a given
path P. We also denote Ng(p) the set of the neighbors

_ Catchment
——— -7 basins

Watersheds _

Minima

Fig. 1. Minima, catchment basins, and watersheds.

of a pixel p, with respect to G :, Ng(p) = {p' € 2,
(p,p’) € G}

Before introducing watersheds, we need to recall the notion
of minimum (see Fig. 1).

Definition 2: A minimum M of I at altitude / is a connected
plateau of pixels with the value h from which it is impossible

to reach a point of lower altitude without having to climb:

V, € V., &M, suchthat I, <I(p),
VP = (po,p1,...p1) such that po = p and p; = g,
5 € {1,1] such that I(p;) > I(po).)]

A minimum is thus a connected and iso-intensive area where
the gray level is strictly darker than on the neighboring pixels
(the darker the pixel, the lower its value or elevation). These
extrema are often referred to as regional ones [40], as opposed
to the local ones.

We can now proceed with the definition of catchment basins
and watersheds, which is done below using two different
approaches.

B. Definition in Terms of Steepest Slope Lines

Definition 3 (Catchment basin, first definition): Let I be a
grayscale image. The catchment basin C(M) associated with
a minimum M is the set of pixels p of Dy such that a water
drop falling at p flows down along the relief, following a
certain descending path called the downstream of p {27], and
eventually reaches M.

The lines which separate different catchment basins build
what is called the watersheds (or dividing lines for some
authors) of I (see Fig. 1). The problem of the thickness of
these lines is discussed in Sections II-C and III-C.

Notice that the catchment basins of an image I correspond
to the influence zones of its minima. In this sense, we have a
close relation between the binary skeleton by influence zones
[23] and the watersheds. As we shall see in Sections IV-B and
V-B, the notion of catchment basin—Ilike that of min-
imum—is not a local one: in many cases, no local
consideration can allow one to decide whether two pixels
belong to the same catchment basin or not.

For real, continuous, derivable and lower-complete func-
tions (the only possible plateaus of these functions are their
minima), the direction of the flow path at any point is defined
almost everywhere by the opposite of the gradient’s azimuth at
this point (Some theoretical problems with this definition are
discussed in [40, p. 446]). On the contrary, when dealing with
digital functions, there exists no rule to set up the path a drop
of water would follow [27]. Therefore, this intuitive approach
to watersheds is not well suited to practical implementations:

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

---- === Catchment basins

_-Water level

“Minima

Fig. 2. Building dams at the places where the water coming from two
different minima would merge.

in fact, we will see in Section II-D that the algorithms relying
on it yield biased results in some cases. The definitions given
in the next section are more suited to the formalization of
catchment basins and watersheds in digital spaces, and are
more oriented towards algorithm design. Thus, from now on,
we shall deal only with digital spaces.

C. Definition by “Immersion”

The second approach for introducing watersheds [3] can be
considered as an algorithmic definition, and is more suited
to practical implementations. The algorithm we introduce in
Section III relies on the present definition. By analogy, we can
figure that we have pierced holes in each regional minimum of
1, this picture being regarded as a (topographic) surface. We
then slowly immerse our surface into a lake. Starting from the
minima of lowest altitude, the water will progressively fill up
the different catchment basins of I. Now, at each pixel where
the water coming from two different minima would merge,
we build a “dam” (see Fig. 2). At the end of this immersion
procedure, each minimum is completely surrounded by dams,
which delimit its associated catchment basin. The whole set
of dams which has been built thus provides a tessellation of
I in its different catchment basins. These dams correspond to
the watersheds of I.

Let us express this immersion process more formally: I be-
ing the grayscale image under study, denote hyi, the smallest
value taken by I on its domain Dj. Similarly, denote A,y the
largest value taken by I on Dj. In the following, T, (/) stands
for the threshold of I at level h:

Tw(I) = {p € D1,1(p) < h}. ©))

We also denote C(M) the catchment basin associated with a
minimum M and Cp(M) the subset of this catchment basin
made of the points having an altitude smaller or equal to h:

Ch(M) = {pe C(M),I(p) < h} = C(M)NTH(I). (4

As concerns the minima of I, miny (I) refers to the set of
points belonging to the minima at altitude h.

We now need to recall the definitions of the geodesic
distance [24] and of the geodesic influence zones. Let A be
a set which is first supposed to be simply connected.

Definition 4: The geodesic distance da(x,y) between two
pixels z and y in A is the infimum of the length of the paths
which join z and y and are totally included in A:

da(z,y) = inf{{(P), P path between z and y
which is totally included in A}. (5)

585

Fig. 3. The geodesic distance between x and y inside A is the infimum of the
length of the paths between these two points which are totally included in A.

Fig. 4. Geodesic influence zone of connected component By inside set A.

This definition is illustrated in Fig. 3.

Suppose now that A contains a set B made of several
connected components By, By, - -, By.

Definition 5: The geodesic influence zone iza(B;) of a
connected component B; of B in A is the locus of the points of
A whose geodesic distance to B; is smaller than their geodesic
distance to any other component of B:

izA(Bi) = {p € A,Vj € []-ak]/{i}adA(pa Bz) < dA(pa B])}
(6)

This concept is illustrated in Fig. 4. Those points of A which
do not belong to any geodesic influence zone constitute the
skeleton by influence zones (SKIZ) of B inside A, denoted
SKIZ 4(B):

SKIZ4(B) = A/IZ4(B) with IZs(B)= | iza(Bi).

i€[1;k]

(N
According to this digital definition, the geodesic SKIZ of
B in A does not necessarily separate the different geodesic
influence zones. Indeed, due to parity problems, it is often
made of disconnected lines. Moreover the digital SKIZ may
sometimes be a “thick” one, since the set of the pixels which
are equally distant from two connected components may well
be very thick, as illustrated by Fig. 9. In Section III-C, we go
back to these subtleties, but we do not take these problems
into account here: we suppose that the geodesic SKIZ is
always made of lines having one pixel thickness and thus
separating the different geodesic influence zones. Note that the
algorithm introduced in Section Il makes use of a labeling of
the influence zones and catchment basins, which allows us to
avoid parity problems. The above definitions easily extend to
the case where A is not simply connected, nor even connected
at all.

586 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

()

O

y

Fig. 5. The three possible inclusion relations between Y and Y N X,

min *

To simulate the immersion procedure described above, we
start from the set T}, (I), the points of which being those
first reached by the water. These points constitute the starting
set of our recursion. We thus put

ain = Lhogin (I) ®

X4, is made of the points of I which belong to the minima
of lowest altitude. Let us now consider the threshold of I at
level Ay + 1, ice., Th_ +1(I). Obviously, X4, C Th,.+1{1).
Now, Y being one of the connected components of T}, . +1(1),
there are three possible relations of inclusion between Y and
Ynx Foin -
1) YN X, = O in this case, Y is obviously a new
minimum of I. Indeed, according to the definitions in

Section II-A, Y is a plateau at level hyy, + 1, since

Xy =1 > hpin +1
VpeY P € Xh, (p) 2
peY = I(p)shm1n+1

X

Moreover, all the surrounding pixels do not belong
to Th, +1(I) and have therefore a gray level strictly
greater than Ap, + 1. The minimum thus discovered is
“pierced,” hence its corresponding catchment basin will
be progressively filled up with water.

2) Y N Xy, # < and is connected: in this case, Y corre-
sponds exactly to the pixels belonging to the catchment

basin associated with the minimum Y'NX,_ and having
a gray level lower or equal to hp, + 1:
Y = Chn)in+l(Y n Xhmin)' (9)

3) YNX,,, # < and is not connected: we therefore
notice that Y contains different minima of I. Denote
2y, 4y, -+, Zi these minima, and let Z; be one of them.
At this point, the best possible choice for Cy,, +1(Z;) is
given by the geodesic influence zone of Z; inside Y:

Chunt+1(Zi) = i2y(Z;). (10)

These inclusion relationships are illustrated in Fig. 5. Since all
the possibilities have been discussed, we take as second set of
our recursion the following one:

(11)

This relation holds of course for all levels %, and finally,
we obtain the following definition.

Definition 6 (Catchment basins and watersheds by immer-
sion): The set of the catchment basins of the grayscale image
is equal to the set X, obtained after the following recursion:

a) Xhm'm = Thmin(I)’

b) Yhe [hmin,hmax - 1]7Xh+l = minh+1 u IZThH(I) :

(Xn).

Xhgat1 = Minpy 11 U I1Z7, (1)Ko)-

" ".s
:

Fig. 6. Recursion relation between X and Xp ;.

=

Minima

Watersheds

Fig. 7. A classic trap: edge A does not belong to the set of watershed lines.

The watersheds of I correspond to the complement of this set
in Dy, i.e., to the set of the points of Dy which do not belong
to any catchment basin.

The recursion relation between two successive levels is
illustrated in Fig. 6.

D. Review of the Existing Algorithms

We here restrict our attention to the algorithms developed
in the field of image processing. (Those coming from the field
of digital topography are indeed extensively reviewed in [12],
[43].) In Section IV-B, their advantages and drawbacks will be
summarized and opposed to those of the algorithm proposed
in this paper.

Beucher and Lantuéjoul [3] were the first to propose a
watershed algorithm based on a immersion analogy (see Sec-
tion I1-A). According to it, the geodesic influence zones of a
level inside the next one are determined via binary thickenings
until idempotence with structuring elements M and E (these
capital letters refer to Golay’s alphabet {16]). As illustrated
by Fig. 7, watersheds computed this way may, in some special
configurations, contain undesirable arcs. This is due to the fact
that the involved thickenings are homotopic ones, whereas the
catchment basin associated with a given minimum does not
necessarily have the same homotopy of this minimum. On
Fig. 7, arc A is not part of the watersheds, since it does not
separate two different minima! Furthermore, as explained in
{50, ch. 2], such algorithms are inefficient on nonspecialized
architectures, since the whole set of pixels needs to be scanned
at each thickening step.

Watersheds can also be determined through graytone skele-
tons (see [32]). Following this approach, Beucher proved that
the watersheds of a function are nothing but the closed arcs of
its skeleton [4]. As in the binary case, skeletons of grayscale
images can be computed by performing homotopic thinnings
until idempotence with the L structuring element. Let us recall
that the thinning of a function I by a two-phase structuring
element T' = (T}, T3), denoted I O T, is given by

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

v pE DI»
5 if I(p) @ Ty < I(p) <
I(p)® 15 7
Ip)OT = et ()
I(p) otherwise.

In the above formula, @& and © refer to the well-known
Minkowski operations [33]. The nonclosed arcs of the skeleton
can then be easily removed by thinning it until idempotence
with the structuring element E. However, the composition of
two idempotent transformation is not necessarily idempotent.
Hence, the whole process (skeletonization followed by prun-
ing) must be iterated until idempotence [43]. This results in
a highly time consuming algorithm which, like the previous
one, falls into such traps as that illustrated by Fig. 7. (Arc A
cannot be removed by pruning.)

The algorithm proposed by Friedlander in [14] is a sequen-
tial one [38]. Such sequential algorithms are extensively used
in the field of MM [25]. They rely on scanning of the images
in predefined orders, in which the new value of each pixel is
immediately taken into account for the computation of the next
pixel values. Here, an initial propagation step yields the “broad
catchment basins” of the image I under study. The broad
catchment basin associated to a minimum M is the set of pixels
that can be reached by following a never descending path start-
ing from M. Every pixel of D; belongs at least to one broad
catchment basin. The zone where two or more broad catchment
basins overlap is referred to as a “watershed zone.” Its comple-
ment constitutes the “restricted catchment basins.” Finally, the
catchment basins themselves are obtained via the SKIZ of the
restricted catchment basins. This procedure is relatively fast,
since all steps are performed sequentially. In addition, since a
labelling of the different catchment basin is used in the algo-
rithm, such traps as that of Fig. 7 are avoided. However, the
propagation step being based on the definition in terms of flow
paths (see Section II-C), the resulting watershed lines may be
improperly located, i.e., not even on crest-lines of the image.

Beucher describes a sequential algorithm based on an arrow-
ing of the image [6, ch. 5]. It requires three major steps: first,
complete the function in order to get a lower-complete function
(i.e., a function where the only points without neighbors
of lower altitude are the points of the minima). Second,
“arrow” the completed function: for each pair of adjacent
pixels (p1,p2) € G, the fact that p; is strictly higher than
pe is indicated by an arrow pointing from p; to p; (see
Fig. 8). Such an arrowing allows one to code the neighborhood
configurations of all pixels in a very compact way. Third, label
the regional minima and propagate the labels along the image
via the arrowing. This algorithm may be implemented sequen-
tially, and is thus faster than the two first ones. However, here
again, some errors may occur in the propagation step.

I1I. PROPOSED ALGORITHM

A. General Description

The algorithms reviewed above share some characteristics:
first, they are based on successive complete scannings of the

587

. \/— Watershed

Fig. 8. An example of an arrowing on a hexagonal grid. There are here two
minima which correspond to the hachured zones.

image under processing. This means that at each step, all
the pixels are scanned one after the other in a predetermined
order, generally a video or an antivideo scanning. Second,
these algorithms do not run in a fixed number of iterations:
the image has to be scanned entirely at each iteration, the
number of which being often very large. Some of these al-
gorithms have been implemented on specialized architectures.
In this case, their computation time remains acceptable. But
on conventional computers, they are far from being efficient:
computing a watershed transformation may take hours in some
cases.

To speed up the computations, one has to design algorithms
taking into account the fact that, at a given step, only the values
of a small number of pixels may be modified [50]. Rather
than scanning the entire image to modify only two pixels, the
algorithm should be designed to have a direct access to these
pixels. Therefore, in the following, we suppose that the image
pixels are stored in a simple array, and that the following two
conditions are satisfied:

1) Random access to the pixels of an image.

2) Direct access to the neighbors of a given pixel (its

4 neighbors in 4-connectivity, 6 on a hexagonal grid,

8 on a 8-connectivity, etc.).
If these two prerequisites are fulfilled, one is able to design
extremely efficient morphological algorithms. The algorithms
designed by M. Schmitt [39], based on the propagation of
chain codes along the images, rely on these principles and
are particularly efficient for geodesic transformations. Simi-
larly, some new algorithms have recently been designed for
computing morphological transformations with any kind of
structuring elements [51], various kinds of skeletons as well
as many different morphological transformations [50].

Our algorithm is based on the definition given in Sec-
tion IT-C.We therefore have to consider the successive thresh-
olds of the image under study, and to compute geodesic
influence zones of one threshold inside the next one as fast
as possible. In the sequel, for the sake of clarity, the proposed
algorithm is decomposed into two steps. Putting them together
only allows one to save a little time and memory space. In or-

588 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

der to have a direct access to the pixels at a given level, the first
step consists in an initial sorting of the pixels in the increasing
order of their gray values. The method described in Sec-
tion I1I-B completes this very efficiently, since it exploits the
particular structure of our data. It runs in linear time with
respect to the number of pixels to be sorted. In the second step,
a fast computation of geodesic influence zones is enabled by a
breadth-first scanning of each threshold level. This particular
scanning is implemented via the use of a queue of pixels, i.e., a
first-in-first-out data structure. Notice that many morphological
transformations can be efficiently performed by algorithms
based on queue structures [52], [50]. This second step, called
the flooding step, is detailed in Section III-C.

B. The Sorting Step

Among the vast number of available sorting techniques
[26], one is particularly suited to the present problem. It
is a distributive algorithm [26] which resorts to address
calculations. This technique was introduced by E.J. Isaac
and R.C. Singleton in [22] and is briefly described in [26,
pp. 162—~166]. The procedure first determines all the exact
frequency distribution of each image gray level. The cumu-
lative frequency distribution is then computed. This induces
the direct assignment of each pixel to a unique cell in the
sorted array.

Let us denote n the number of image pixels and Ay,
and hy., the lowest and largest gray levels, respectively.
The present sorting technique has the considerable advantage
of requiring only 2n “look and do” operations—one for
determining the frequency distribution and the other for the
assignment—plus Ay,ay — hmin — 1 additions to get the cumula-
tive frequency distribution. As memory and time requirements
to compute frequency distributions are generally negligible
compared to those required for images, this sorting procedure
constitutes one of the best choices to deal with our data.
Together with the cumulative frequency distribution, the sorted
array of (pointers to) pixels enables a direct access to the
pixels at a given level h. This ability is extensively used in
the flooding step described in the next section.

C. The Flooding Step

Once the pixels have been sorted, we proceed to the progres-
sive flooding of the catchment basins of the image. Suppose the
flooding has been done up to a given level h. Every catchment
basin already discovered—i.e., every catchment basin whose
corresponding minimum has an altitude lower or equal to
h—is supposed to have a unique label. Thanks to the initial
sorting, we now access the pixels of altitude A+ 1 directly and
given them a special value, say MASK. Those pixels among
them which have an already labeled pixel as one of their
neighbors are put into the queue. Starting from these pixels, the
queue structure enables to extend the labelled catchment basins
inside the mask of pixels having value MASK, by computing
geodesic influence zones (see Section II-C). After this step,
only the minima at level h + 1 have not been reached. Indeed,
they are not connected to any of the already labelled catchment
basins. Therefore, a second scanning of the pixels at level

O @ O O O
O 0 0 0 0 000 0 OO0
O 0 0 0 0@ o0

OO0 O 0O 0 0O OO0 0 0O00O0
OO0 0 0 0O ¢ 0 O 0O 0O

O 0 O O 0O 0O O O O O 0O

Fig. 9. According to the hexagonal distance, all the bold pixels (gray areas)
are equidistant to the two black ones.

h + 1 is necessary to detect the pixels which still have value
MASK, and to give a new label to the thus discovered catchment
basins.

The queue which is used is a first-in-first-out data structure:
the pixels which are first put into it are those which can first
be extracted. In practice a queue is simply a large enough
array of pointers to pixels, on which three operations may be
performed:

* fifo_add(p)
* fifo_first()

Puts the (pointer to) pixel p into the queue.
Returns the (pointer to) pixel which is at
the beginning of the queue, and removes
it from the queue.

Returns true if the queue is empty and
false otherwise.

* fifo_empty()

In order to implement such operations, a kind of “circular”
queue is one of the most efficient choices: the array represent-
ing our FIFO structure is addressed by two indexes, ptr_ first
and ptr_last. Each time a new element is put into the queue,
it is stored at the address toward which ptr_last is pointing.
prt_last is then incremented. When the limit of the array is
reached, this index loops back to the beginning of the array.
Similarly, ptr_ first is a pointer toward the first element which
can be removed from the structure, and is incremented after
each removal. It may also loop back to the start of the array. To
optimize memory requirements, “dynamic” queues may also
be considered, but their use generally slows down the whole
process.

Not only does the use of a queue of pixels speed up
the computations, it also allows us to solve the accuracy
problems encountered by most of the algorithms reviewed
in Section II-D. First, the labeling of the catchment basins
automatically avoids such traps as that of Fig. 7. Now, in
order to get perfectly located watershed arcs, the successive
geodesic SKIZ involved in the process have to be as good
as possible. The first thing to notice is that, according to
the discrete distance associated with the underlying grid, the
set of pixels which are equidistant to two given connected
components may well not be a line, but a very thick area. This
is illustrated by Fig. 9. (Recall that the distance between two
pixels is equal to the minimal number of grid edges to cross
to go from one to the other.) Consequently, some simplistic
rules in the computation of the geodesic SKIZ’s could result
in unwanted thick watershed areas. More precisely, suppose
that the plateaus at elevation h are currently being flooded,

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

Catchment basin No 1
0O 0 00 0 0o o o0
o C O 0 0 o O
0 C 0 0 C 0 O

Two minima
i a karge plateau
(all other pixels)

Cuaichment basinNo2 O © 0 0O O O Q
O C o0 C 0o
Thick watersbed

Fig. 10. Using simplistic rules in the breadth-first computation of the
geodesic influence zones may result in unwanted thick watershed lines. Here,
the basins are not symmetric because the neighbors of the upper minimum
were put into the queue before the neighbors of the lower one.

Catchment basin No 1

Two minima
“piercing” a
large plateau

Cuatchment basin No 2 Q700 02000
OO GO OO0

Deviated watershed

Fig. 11. Some simplistic geodesic SKIZ computations may result in deviated
watershed lines (same pixel configuration as in Fig. 10).

and let p be the current pixel. A simplistic rule would be to
say that p is necessarily a watershed-pixel (i.e., belongs to
the set of the watershed lines) if it has a watershed-pixel in
its neighborhood. An example of thick watershed produced
with such a rule is illustrated by Fig. 10. Similarly, declaring
that any pixel which has two pixels with different labels in
its neighborhood is a watershed-pixel may result in deviated
watershed lines, as illustrated by Fig. 11. Let us stress that
these problems are not specific of the hexagonal grid and also
exist with square ones.

To get rid of such difficulties, one may think of resorting
to better discrete distances in the geodesic SKIZ computations
[7], [35], [46], [37]. It is even possible to make use of actual
Euclidean distances by adapting such algorithms as those
described in [10] or [50, ch. 3] to the present case. However,
this would involve propagating vectors rather than distances
and would put a considerable burden on the entire flooding
step. Therefore, these ideas have not been retained in the
present implementation.

Instead, we chose to restrict ourselves to the distance
induced by the used discrete grid. The idea is to make use of a
work image where the successive geodesic distances are actu-
ally stored during the breadth-first propagation. In conjunction
with carefully written rules for the propagation of the labels
inside the plateaus (see algorithm below, lines 31-43), this
results in very well located watershed lines, even in the case of
minima embedded in large plateaus, as illustrated by Fig. 12.
Note that the algorithm given below is designed to yield a
tesselation of the image in its different catchment basins.
Only the pixels which are exactly “half-way between” two
catchment basins are given a special value, hereafter denoted
WSHED.

Algorithm: Fast Watersheds
define MASK —2 / initial value of a threshold level x/

589

Catchment basin No 1
0.0 0.0:0.0.0 00
O0T0C0 0 0 00

Two minima
piercing
a large platcau

Cutclment hasinNo2 0 0 0 0 0. 0..0:0
O 000000000

*\ Watershed

pixels

Fig. 12. Exact catchment basins and watershed points obtained with the
present algorithm.

define wsHED 0 /x value of the pixels belonging to the
watersheds */
define INT —1 / initial value of im, */
» —input: im,;, decimal image;
—output: %m,, image of the labeled watersheds;
* Initializations:
— Value INIT is assigned to each pixel of im, :
V p € Dim,, tmo(p) = INIT;
—current_label — 0;
—current_dist: integer variable
—img: work image (of distances), initialized to 0;
+ Sort the pixels of im; in the increasing order of their gray
values.
Let hpin and hpay designate the lowest and highest values,
respectively.
e For h « huin t0 Agax {
/* geodesic SKIZ of level h — 1 inside level h x/
For every pixel p such that im;(p) = h {
/x These pixels are accessed directly through the
sorted array. %/
ime(p) — MASK;
if there exists p’ € Ng(p) such that sm,(p’) > 0 or
imo(p') = WSHED {
imq(p) — 1; fifo_add(p);
}

current_dist— 1; fifo_add(fictitious_ pixel);
repeat indefinitely {
p —fifo_ first();
if p = fictitious_ pixel {
if fifo_empty() = true then BREAK;
else { fifo_add(fictitious_ pixel);
current_dist — current_dist + 1;
p « fifo_ first();
}

}
For every pixel p’ € Ng(p) {

if img(p') < current_dist and (im,(p’) > 0 or
imo(p') = WSHED) {
/* i.e., p’ belongs to an already labeled
basin or to the watersheds x/
if im,(p’) > 0 {
if im,(p) = MASK or im,(p) = WSHED then
imo(p) — imo(p");
else if im,(p) # tmo(p’) then
im,(p) + WSHED;

590 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

Three labeled minima
inside a vast plateau

Watershed
pixels

Fig. 13.

catchment basin

O OL O]
Wrongly connected
watersheds

Disconnected

To separate the different catchment basins, one cannot simply give value WSHED to the pixels having a pixel with another label in their

neighborhood. Otherwise, some errors may occur.

else if im,(p) = MASK then im,(p) «— WSHED
}
else if 4m,(p’) = MASK and imy(p’) = 0 {
imq(p’) «— current_dist + 1; fifo_add(p');
}
}
}

/* checks if new minima have been discovered x/
For every pixel p such that im;(p) = h {
img(p) < 0; /* the distance associated with p is
reset to 0 %/
if im,(p) = MASK {
current_label — current_label + 1;
fifo_add(p); im.(p) — current_label;
while fifo_empty() = false {
p' — fifo_ first();
For every pixel p” € Ng(p') {
if im,(p”) = Mask { fifo_add(p");
tme(p") « current_label; }

At this point, to get rid of the WSHED-pixels (i.e., to obtain a
real tesselation of the image in its different catchment basins),
it suffices to give them the value of one of their labelled
neighbors (in fact, the pixels belonging to thick watershed
areas must be processed differently . ..). On the other hand,
if we want to separate the different catchment basins, it suffices
to give value WSHED to the labeled pixels having in their
neighborhood at least one pixel with a smaller label. This
is not symmetric, but Fig. 13 shows why it is not wise to give
label WSHEDS to all the pixels having in their neighborhood
a pixel with a different label: in some cases, the catchment
basins could be disconnected and the watersheds be wrongly
connected!

IV. DISCUSSION, PERFORMANCES

A. Analysis of the Algorithm

This watershed algorithm runs in linear time with respect

to the number N of pixels in the image which is processed.
Indeed:

+ In the sorting step, two and only two scannings of the
whole image are necessary to construct the sorted array of
pointers to pixels. An additional scanning of the frequency
array is also required.!

* In the flooding step, each pixel is scanned three times on
average: at each threshold level A, all the concerned pixels
are first assigned value INIT. Then they can be considered
a second time during the breadth-first scanning of the
plateaus at altitude h. Lastly, all the pixels at altitude A
are scanned again in order to see if new minima have
appeared.

The two above steps running in linear time, the entire algo-
rithm is linear with respect to /N. Furthermore its execution
time is practically independent of the number of gray levels
in the image. On the SUN Sparc Station 1, the computation
of the watersheds of a 256 x 256 image takes approximately
2.5 seconds. This is extremely fast compared to some of the
existing algorithm, which may take more than one hour for
the same computation (see Table I).

As concerns the memory requirements, they are a little more
restricting, since the algorithm uses:

* An output image im, of the same size as the initial image
#m;. The number of catchment basins may be large for
practical grayscale images, so that im, has to be coded
on 2 bytes per pixel. We usually use the same image for
the input and the output, i.e., we take tm, = 1m;.

* A sorted array of pointers to pixels. Its size is N (number
of pixels in ¢m;) and a pointer is generally represented
on 4 bytes.

* A distance image imy of the same size as im;. In fact,
imyq is only used for local comparison, so that knowing
it modulo 3 is enough. im,4 can therefore be coded on
2 bits per pixel.

* An array of pointers to pixels, which must be large
enough to contain all the pixels in the queue, at each
step. Although this array can be dynamically allocated, it

1In most cases, i.e., for images coded on 8 bits or less, the size of this array
is negligible compared to that of an image. We thus admit that the execution
time of the sorting procedure is independent of the number of gray levels.

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

591

TABLE |
COMPARISON OF THE PRESENT WATERSHED ALGORITHM WITH THOSE DESCRIBED IN SECTION II-D. THE EXECUTION
TiMES REFER TO IMPLEMENTATIONS ON A SUN SPARC STATION 1, FOR A 512 x 512 DicITAL ELEVATION MODEL ON 8 BITS.

. Precision Correct Detection of .
Algorithm Exef:uuon of the Result for Thick Watershed Adaptablht.y Adaptable
Time - - to Other Grids to Graphs
Lines Fig. 7 Areas
Homotopic binary thickenings hours XX no no XX no
Grayscale thinnings hours XX no no XX no
Sequential algorithm 68 s X yes no XXX no
Arrowing Sis XXX yes no X no
Present algorithm 63s XXXX yes yes XXXX yes
is more efficient to use a fixed array of large size: N/4 Thick watershed ___
. N = dividing area
seems to be more than enough in all practical cases. Thin watershed
. L . in watersheds
* A cumulative frequency distribution array, whose size is = dividing lines =
equal to the number of possible gray levels in im;. We
consider the additional memory it requires as negligible
in practice.
To summarize, if the initial image is coded as an array of N
pixels, then 7% x N bytes are necessary for the watershed
computation. This is a lot, but far from being unacceptable) .
Fig. 14. A case where the watershed lines are no longer thin: we have here

in comparison with the random access memory of today’s
computers.

B. Advantages, Summary Table

Apart from its computational efficiency, the algorithm in-
troduced in this paper has many other advantages: first, it
is very general since it works in 4-, 6-, or 8-connectivity
equally well. Once it has been implemented for a given
grid, it is straightforward to adapt the program to another
grid. To do so, it suffices to change the way the neighbors
of a given pixel are generated. Note that on a square grid,
if the 4-connectivity is used in the flooding step, the re-
sulting watersheds are only 8-connected. Conversely, if the
8-connectivity is used in the flooding, the resulting watersheds
are 4-connected.

Furthermore, the algorithmic definition 6 of watersheds
extends to n-dimensional images. The adaptation of the pro-
posed watershed algorithm to n-dimensional images is thus
immediate. As said above, it suffices to modify the procedure
for generating the neighbors of a given pixel. An example
of three dimensional watersheds is shown in Section V-C,
and the interest of such a transformation is also discussed.
Lastly, Definition 6 also extends to general graphs. Provided
the data structure used to represent graphs allows a direct
access to the neighbors of a given vertex, our algorithm works
fairly well for these objects [48]. Watersheds on graphs are
presented in Section V-D and their interest with respect to
picture segmentation is shown.

On the other hand, none of the algorithms reviewed in
Section II-D is easily adaptable to other digital grids: in
particular, the adaptation of the algorithms based on bi-
nary thickenings, grayscale thinnings, or arrowing would re-
quire cumbersome neighborhood analysis. This is even more
true when it comes to extending these procedures to three-
dimensional images!

Now, the accuracy of the present algorithm is also re-

a watershed area.

markable. We have seen in Section III-C that the labeling
of the catchment basins allows one to avoid such pitfalls
as that illustrated by Fig. 7. We have also shown that the
use of a work distance-image results in watershed pixels
which are perfectly located, even when large plateaus are
involved. Unlike the algorithms reviewed in Section II-D, and
in particular, unlike the classic flooding algorithm which uses
successive geodesic skeletons by influence zones computed
by iterative thickenings [3], the dividing lines are here never
deviated. Moreover, the parity problems are avoided, since
the algorithm constructs labelled catchment basins rather than
watershed lines.

Finally, the present algorithm also gives correct results in
presence of configurations which have not been discussed yet:
watershed areas. These areas are such that one cannot decide
towards which minimum a drop falling on them will slide.
They correspond to special pixel configurations which are not
so rare in practice. An example of a “thick” watershed area
is shown in Fig. 14. In such cases, the algorithm introduced
in Section III-C will assign value WSHED to all the involved
pixels, which is the correct statement. On the contrary, none
of the algorithms reviewed in Section II-D is able to detect a
thick watershed.

In Table I, we have summarized the qualities of the present
algorithm as opposed to those of the algorithms briefly de-
scribed in Section II-D. The execution times are provided here
for information only, since they may vary from one image
to another. They refer here to an 8 bits, 512 x 512 digital
elevation model with 18 catchment basins. The computations
have been achieved in 4-connectivity. Note that algorithms 1
and 2 have also been implemented on a specialized hardware,
the Q 570 of Cambridge Instruments. On this machine and for
the particular image used in Table I, their common execution

592 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

Original image Distance function

Catchment
~— basins

Separation of the
overlapping components

Fig. 15. Binary segmentation by watersheds of the opposite of the distance

function.

time was of approximately 200 s.

V. EXAMPLES OF APPLICATION

A. Use of Watersheds in Image Segmentation

The watershed transformation constitutes one of the most
powerful segmentation tools provided by mathematical mor-
phology [3], [4], [49]. In this section, the word segmentation
addresses the extraction of the different objects present in
the image under study. As concerns the binary case, this
comes down to the separation of the partially overlapping
objects—provided there are no artifacts present. This prob-
lem is extensively discussed in [49] and [50, Appendix]. Its
solution is based on a marking of the different components that
are to be segmented. A marking function is then constructed,
whose different catchment basins correspond to the desired
objects. Here, the marking function is nothing but the opposite
of the distance function of our binary image, i.e., the function
which associates with every feature point the opposite of its
distance to the background. This binary segmentation process
is illustrated in Fig. 15. It has been successfully used for many
problems, such as the segmentation of rice grains [2] or of
coffee bean images [49].

As concerns grayscale images, segmenting them means
dividing then into regions: generally, one of them stands for the
background whereas each of the others corresponds to one of
the objects or areas to be extracted. This segmentation comes
down to the extraction of the contours of the desired objects.
Now, the problem is to clearly define what is a contour and
what is not. Some well-known methods resort to the zero-
crossings of the second derivative of the function representing
the image I under study [29]. Other edge detectors can be
computationally adapted to arbitrary edge profiles [8]. In the
field of mathematical morphology, another kind of approach is
commonly used: the starting point is to say that the contours
of an image correspond to lines where the gray-tone is varying
quickly compared to the neighborhood. Suppose now that we
have determined an image grad(l) where the value of each
pixel corresponds to the modulus of the gradient at this point
(in the following, this image is referred to as a gradient image).
If we regard it as a relief, the searched contours correspond
to some crest-lines of this function. At this point, one can

consider using on grad([) the grayscale skeleton [32] as crest-
line detector. The problem with this transformation is that it
extracts all the crest-lines of a given image. This is not what is
expected, since the contours that should be extracted are closed
ones. Therefore, one has to remove the parasitic dendrites of
the skeleton, i.e., to resort to the watershed transformation.
According to the gradient which is being used, we define the
contours of image I as the watersheds of its gradient.

The watersheds of the gradient are thus at the basis of
the general morphological approach to segmentation that we
briefly present now. A more detailed presentation can be found
in [49] or in [50]. The image which will be used to illustrate
the present segmentation methodology is denoted I and is
displayed in Fig. 16(a)® [17]. It is a 256 x 256 image of a
vertebral column, digitized according to a hexagonal grid, from
which the intervertebral disks have to be extracted. This is a
rather difficult problem, since on the one hand, the noise level
is relatively high and on the other hand, the desired disks do
not have a fixed size and orientation, and can be mistaken for
other features. Simple methods based on thresholdings or top-
hats [31] do not work, so that one has to make use of more
advanced tools.

In fact, the brutal computation of watersheds of the gradient
does not constitute a good segmentation method either. Indeed,
whatever gradient is used, the simple computation of its
watersheds mostly results in an over-segmentation, i.c., the
correct contours are lost in a mass of irrelevant ones. This
is true even if one had taken the precaution of filtering the
initial image or its gradient. For example, I’ [see Fig. 16(b)]
was obtained by performing on [an alternating sequential
filtering [41, ch. 10]). A morphological gradient of I’ was
then determined, which is the supremum of three directional
gradients. More precisely, denoting S, S, and S3 the three
elementary segments of the hexagonal grid, we computed

grad'(I') = sup [(I'® S;) - (I'68,)].

1<i<3

13)

This gradient is displayed in Fig. 16(c). Now, in Fig. 16(d),
one can see the watersheds of this gradient and appreciate the
resulting segmentation! In many cases, the over-segmentation
is simply due to noise. But, as in the present example, some
irrelevant arcs may also correspond to objects that do not have
to be extracted, and whose contours should not appear in the
final segmented image. In both cases, so as to get rid of this
over-segmentation, one has two possibilities:

* Remove the irrelevant contour elements.

* Modify the gradient function so that the resulting catch-

ment basins only correspond to the desired objects.

The first choice is the most natural and classical one: on
the other hand, the watershed image can be regarded as an
image of contours, some of which having to be suppressed.
On the other hand, one may consider the different catchment
basins as regions and merge adjacent regions according to
some criteria. These methods are referred to in literature
as region-growing algorithms [18], [34]. A morphological
region growing algorithm relying on watersheds on graphs

2This image was provided by Neil Roberts.

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

593

@

©

(2

(h)

Fig. 16. Segmentation of invertebral disks. (a) Original image I (vertebral column). (b) I' = filtering of I. (c) Gradient image grad’ (I'). (d) Watersheds
of grad’ (I'). (¢) Markers: skeletons of the “domes” of I. (f) Inner and outer markers. (g) Watersheds of modified gradient. (h) Final segmentation.

is presented in Section V-D. The second choice makes use
of some external knowledge on the collection of images under
study, in the sense that it requires and initial marking step. One
has to use the knowledge available on the problem—shape
of the desired objects, noise present on the image, darkness
of the background, etc.—to design a robust algorithm for
extracting markers of the different regions to be segmented.
By marker of a region, we mean a connected set of pixels (or
even one single pixel) included in this region. On the example
of Fig. 16, using again a topographic analogy, one can see that
the intervertebral disks correspond to domes of I having a well
defined shape. At this point, the idea is to detect markers of
all the domes of I, to extract their precise contours and lastly
to remove the unwanted domes by using shape information.
Hence, a morphological dome extractor described in [17] is
utilized. To get more precise markers, the results it yields is
then skeletonized. The domes of I as well as their skeletons
(actual markers) are displayed in Fig. 16(¢). As concerns the
background marker, it corresponds to the deepest valley-lines

of the original image which separate the previous markers.
The algorithm for extracting it is quite similar to the one
presented in the next paragraph for selecting the crest-lines
of the gradient and is detailed in [49], [50]. This marker is
displayed in Fig. 16(f) together with the previously obtained
ones.

Once these markers are extracted, a morphological trans-
formation based on grayscale geodesic operations (see {49,
Section 4.4], [50, Appendix]) allows us to:

1) impose them as minima of a gradient function grad(7),

2) suppress all the other gradient minima (the insignificant

ones) by filling up their catchment basins,

3) preserve the most important crest-lines of grad(/) lo-

cated between the markers.
This transformation is called modification of the gradient
homotopy, or simply gradient modification. In some cases,
the initial gradient has to be carefully chosen, since its most
important crest-lines separating the extracted markers must be

594 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

©

(b)

@

Fig. 17. Topographic watersheds computed on a digital elevation model. (a) Digital elevation model. (b) Catchment basins of original DEM. (c) Catchment
basins of modified DEM. (d) Watersheds of modified DEM.

properly located. For the present application, the gradient grad
introduced in (13) is sufficient.

The computation of the watersheds of this modified gradient
provides then the desired segmentation: the catchment basin
of the background marker stands for the background itself
whereas the boundaries of all other catchment basins—i.e., the
watersheds—correspond to the desired objects. In Fig. 16(g),
the resulting contours are superimposed on the initial image.
Finally, to extract the actual disks from the thus contoured
object, one has to use the already mentioned shape informa-
tion: the disks are the only objects whose skeleton is smooth,
elongated in only one direction, and not too long. The final
segmentation is displayed in Fig. 16(h). The methodology
presented in this section has already been successfully ap-
plied to many problems, such as the segmentation of 2-D
electrophoresis gels [4], holograms, circuits, cells, etc. Thanks
to the algorithm introduced in this paper, the sophisticated
segmentation procedure we have presented here runs in less
than ten seconds on a SUN Sparc Station.

B. Watersheds on Digital Elevation Models

Watersheds constitute primarily a topographic concept. The
present algorithm provides thus an efficient tool for extracting
topographic basins from DEM’s [43]. The DEM shown in
Fig. 17(a) is used to illustrate the methodology.> It represents a
256 x 256 matrix of elevations having an equal z-y resolution

3 This DEM was produced by Eric Lourtie, Catholic University of Louvain,
Belgium.

of 50 meters. We consider it in square grid and 8-connectivity,
so that the resulting watersheds will be 4-connected. The major
part of the model belongs to the hydrologic basin of the Thyle
river (Belgium).

Applying the present watershed algorithm directly to the
model leads to Fig. 17(b). Like in the previous section, the
disappointing over-segmentation is due to the many minima
present inside the DEM. However, fluvial erosion processes
do not normally produce any minima at the spatial resolution
of usual DEM’s. One may thus assume that all minima within
the present DEM represent artifacts or data errors. Hence, the
only minima to keep are located along the boundaries of the
model. The removal of the others by modifying the homotopy
of the model is straightforward. The used technique is similar
to that presented in the previous section, and is detailed in [43].
Applying the watershed transformation to the modified model
leads to the desired catchment basins, which are displayed in
Fig. 17(c). In Fig. 17(d) the watersheds are superimposed on
the initial DEM.

C. Three-Dimensional Watersheds

As already mentioned, the present algorithm works for
n-dimensional images without any modification: it suffices to
consider the appropriate set of neighbors of each pixel. For
example, Fig. 18(a)is a 32 x 32 x 32 binary image displayed
as thirty-two 32 x 32 2-D images (from left to right and top
to bottom). It has four voxels set to zero in the lower plane as
well as in the upper plane, the rest of the volume being set to

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

Ll x]

<
£l

a

(e) fb)

Fig. 18. An example of a three-dimensional watershed.

one. Fig. 18(b) represents the watershed surfaces associated
with Fig. 18(a). The cubic grid in six connectivity was used
(each voxel is connected to its six nearest neighbors). In fact,
the watersheds we have determined are nothing but the SKIZ
of the zero voxels present in the 3-D image. n-dimensional
watersheds are currently being applied to the segmentation of
3-D medical images and of multispectral images [44].

D. A Morphological Region-Growing Algorithm Based
on Watersheds for Graphs

The extension of the present algorithm to graphs* is con-
sidered here and shown to be at the basis of a powerful
region-growing algorithm.

1) Mathematical Morphology on Graphs: Let us first provide
some quick reminders on mathematical morphology for graphs:
digital images studied through morphological transformations
are usually digitized according to square or hexagonal graphs,
but one can well imagine using general graphs and applying
the same kind of processings [47]. In fact, graphs constitute
nothing but a particular kind of lattice and fit very well in
the general framework within which MM is defined in [41,
ch. 1,2].

More precisely, let G = (V, E) be a graph with V' its set
of vertices and F its set of edges. For the sake of simplicity,
G is here supposed to be a nonoriented and planar 1-graph
without loops [19]. It constitutes the underlying structure, just
like grids for digital images. The discrete distance induced by
E on the set V is denoted dg and defined as follows:

Definition 7: ¥ (vy,v2) € V2, the distance dg(v1,v2) be-
tween v; and v, is equal to the length of the shortest paths
between them in E: dg(vy,ve) = inf{l{(P), P path joining
v, and vy in E}.

The kind of objects we will process can now be defined.

Definition 8: A morphological graph G on G is a mapping

from V into R:
V - R
G
v — G(v).

Considering a morphological graph on G comes down to
assigning a “gray-tone” to each of its vertices.

(14)

4 Surprisingly, the first implementation of this algorithm was designed for
graphs [48].

595

Fig. 19. Dilation of size one of a binary graph (1-vertices in black, 0-vertices
in white).

Now, erosions and dilations can well be defined for graphs.

Definition 9: Let G be a morphological graph on G. The
dilation of size n of G, denoted 6(™(G) is the morphological
graph defined on G by

Vv - R
5(ﬂ)(g)<
v — sup{G(v'),v’ € V,dg(v,v’) < n}.
(15)

Similarly, the erosion is defined by taking an inf rather

than a sup. An example of a dilation of size one of a binary
morphological graph—i.e., a morphological graph taking its
values in {0,1}—is presented in Fig. 19. Now, all trans-
formations of Euclidean morphology which do not involve
any notion of direction can be easily transposed to graphs
[47]. In particular, the “immersion” definition of watersheds
(see Section II-C) extends to graphs, and the implementation
introduced in Section III works very well in this framework
[48]. It suffices to use vertices rather than pixels and to code
the graphs by means of data structures allowing a direct access
to the neighbors of a given vertex [47], [50].
2) Watersheds on Graphs and Picture Segmentation: The
watersheds transformation for graphs will now be at the
basis of a new segmentation procedure. As explained in Sec-
tion V-A, one cannot simply use the watersheds of the
gradient—a gradient—of a grayscale image I to segment
it. Indeed, although the correct contours are most of the
time present in the watershed image, many contour arcs are
irrelevant to the problem. At this point, the solution presented
in Section V-A makes use of an external knowledge on the
sample under study, in order to find a way for extracting
markers of the different regions. These markers are then
utilized to modify the homotopy of the gradient on which
watersheds will be computed. This method avoids the over-
segmentation to appear.

However, for some very complex segmentation problems,
and especially when the sample are very different from one
another, extracting robust markers is an almost impossible
task. The idea is then to remove the insignificant contour arcs
of the gradient watersheds. In the present section, rather than
using the watershed lines, the dual representation is used: we
consider the tessellation provided by the catchment basins of
the gradient (here, we implicitly suppose that the watersheds
have zero pixel thickness). Suppressing a watershed line comes
down to merging two catchment basins.

Let {mi} e, e the minima of the gradient grad(I) of
grayscale image I, and denote {C(mk)})1) their associated
catchment basins. Each minimum my corresponds to an area
of I which is “more homogeneous” than the neighborhood.

596 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

Fig. 20. Mosaic image and associated adjacency graph.

The associated catchment basin C(my) simply extends this
area until it is bounded by some crest-lines of the gradient
function. By assigning to each basin a unique gray level, we
decompose image I into homogeneous areas and get a simpler
image called mosaic image. Of course, the gray level assigned
to each catchment basin in the mosaic image has to be carefully
chosen, and must be close to the corresponding gray levels of
the original image I. One of the best solutions is to assign to
the pixels in C{my,) the infimum (the supremum would work
equally well) of {I(p),p € my}.

Definition 10: Let I be a grayscale image and grad(I) be a
gradient image of I. Let {mu},(; ,,) be the minima of grad(I)
and {C(mg)} kel1,n their associated catchment basins.

The mosaic image of order 1 of I, denoted IV, is given by

Vke[l,n], YpeClm), I(l)(p) = inf{I(p), p € mz}.
(16)

The mosaic image 1)) provides a decomposition of I into
roughly homogeneous regions, but as said above, one has
to merge regions into larger ones to get rid of the over-
segmentation. To do so, we consider the adjacency graph
GW(I) of IV: its vertices correspond to the different catch-
ment basins, and there is one and only one edge between
two adjacent regions. Moreover, the value associated with
each vertex of GU(T) is the gray level of the corresponding
region. The algorithm for determining the graph is based on a
contour tracking of the different regions of I(!). An example
of adjacency graph is displayed in Fig. 20. The procedure
described in the previous paragraph for I can now well be
applied to GU(I), by using gradients and watersheds on
graphs. This yields a mosaic image of second order I where
each region corresponds to a catchment basin of the gradient
of GW(I). Homogeneous regions of 1) have been merged
into larger ones, thus removing a bit of the over-segmentation.
The process is then iterated until the desired merging level is
reached, or until a given criterion is fulfilled.

An example of this procedure is shown in Fig. 21. Unfor-
tunately, this example is not extremely significant, since there
are not actually regions to segment on image 21(a). But it
shows how the described procedure works. Compared to most
region-growing algorithms [21], [15], [34], this method has
the advantage of being absolutely independent of the order in
which the vertices are scanned. Moreover, the merging is not
done according to local criteria: the watershed being a global
transformation, numerous regions may be merged at each step
into a single one, whereas other regions remain unchanged.
Lastly, contrary to many split and merge algorithms, the
initial decomposition is not done blindly: the catchment basin
tessellation we have presented is meaningful compared to the

quadtree decomposition described in [15]. Similar algorithms
have already been successfully developed by S. Beucher
to segment road images [5]. This method also provides a
hierarchical decomposition of images which is an alternative
to other morphological decompositions, such as those based
on openings and closings [20].

VI. CONCLUSION AND PROSPECTS

The watershed algorithm introduced in this paper is ex-
tremely powerful compared to the existing ones. Not only is it
often hundreds of times faster on conventional computers, but
it also proves to be more accurate. Furthermore, it turns out to
be very flexible, since it can be easily adapted to any kind of
digital grid and extended to n-dimensional images and graphs.

The examples of application which have been provided
clearly illustrate the huge interest of the watershed transfor-
mation. Until now, its computation was so time consuming on
conventional computers that only few people could actually
use this transformation in practice. The present algorithm
should now allow anyone to resort to watersheds for solving
complex segmentation problems. Furthermore, the first steps
into the watershed segmentation of 3-D grayscale images have
already been enabled by this implementation. It is thus ex-
pected to contribute to new insights into the use of watersheds
in the field of image analysis. In particular, more experiments
are currently being carried on to evaluate the interest of
watersheds on graphs with respect to picture segmentation.

ACKNOWLEDGMENT

We are most grateful to M. Grimaud for his useful as-
sistance and for having provided the example of grayscale
segmentation described in Section V-A.

REFERENCES

[1] L.E. Band, “Topographic partition of watersheds with digital elevation
models,” Water Resources Res., vol. 22, no. 1, pp. 15-24, 1986.

[2] M. Benali, “Du choix des mesures dans les procédures de reconnais-
sances des formes et d’analyse de texture,” Ph.D. dissertation, School
of Mines, Paris, 1986.

[3] S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detection,”
in Proc. Int. Workshop Image Processing, Real-Time Edge and Motion
Detection/Estimation, Rennes, France, Sept. 17-21, 1979.

[4] S. Beucher, “Watersheds of functions and picture segmentation,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Paris,
France, May 1982, pp. 1928—1931.

[5] , “Obstacle detection and vehicle trajectories,” Prometheus Image
Processing Meeting, Paris, France, May 18, 1989.

[6] , “Segmentation d’images et morphologie mathématique,” Ph.D.
dissertation, School of Mines, Paris, France, June 1990.

[7] G. Borgefors, “Distance transformations in digital images,” Comput.
Vision, Graphics, Image Processing, vol. 34, pp. 334-371, 1986.

[8] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, no. 6, pp. 679—698, Nov.
1986.

[9] S.H. Collins, “Terrain parameters directly from a digital terrain model,”

Canadian Surveyor, vol. 29, no. 5, pp. 507-518, 1975.

P.E. Danielsson, “Euclidean distance mapping,” Comput. Graphics

Image Processing, vol. 14, pp. 227-248, 1980.

H. Digabel and C. Lantuéjoul, “Iterative algorithms,” in Proc. 2nd

European Symp. Quantitative Analysis of Microstructures in Material

Science, Biology and Medicine, Caen, France, Oct. 1977, J. L. Chermant,

Ed. Stuttgart, West Germany: Riederer Verlag, 1978, pp. 85-99.

D. Douglas, “Experiments to locate ridges and channels to create a

new type of digital elevation model,” Cartographica, vol. 23, no. 4,

pp. 29-61, 1986.

[10]
(11]

[12]

VINCENT AND SOILLE: WATERSHEDS IN DIGITAL SPACES

[13]

(14]

(15]
{16]
7]
(18]

[19]
[20]

[21]

[22]
[23]

[24]

{25]

[26]
[27]
[28]

[29]
[30]

©

F. Doyle, “Digital terrain models: An overview,” Photogram. Eng.
Remote Sensing, vol. 44, no. 12, pp. 1481-1485, Dec. 1978.

F. Friedlander, “A sequential algorithm for detecting watersheds on a
gray level image,” Acta Stereologica, vol. 611 (Proc 7th Int. Cong. For
Stereology), Caen, France, pp. 663—668, Sept. 1987.

A. Gagalowicz, “A new approach for image segmentation,” in Proc. 8th
Int. Conf, Pattern Recognition, Paris, France, Oct. 1986.

M. Golay, “Hexagonal pattern transforms,” in Proc. IEEE Trans. Com-
put., vol. C-18, no. 8, Aug. 1969.

M. Grimaud, “Intervertebral disk segmentation,” School of Mines, Paris,
France, Internal Rep. CMM, Jan. 1990.

R. Haralick and L. Shapiro, “Survey: Image segmentation techniques,”
Comput. Vision, Graphics, Image Processing, vol. 29, pp. 100-132,
1985.

F. Harary, Graph Theory. Reading, MA: Addision-Wesley, 1969.
H.J.A.M. Heijmans and A. Toet, Morphological Sampling, Center
Math. Comput. Sci., Amsterdam, The Netherlands, Internal Rep. AM-
R8913, Aug. 1989.

J.L. Horowitz and T. Pavlidis, “Picture segmentation by a directed split
and merge procedure,” in Proc 2nd Int. Conf. Pattern Recognition, 1974,
pp. 424-433.

E.J. Isaac and R. C. Singleton, “Sorting by address calculation,” J. ACM,
vol. 3, pp. 169-174, 1956.

C. Lantuéjoul, “Skeletonization in quantitative metallography,” in Issues
of Digital Image Processing, R.M. Haralick and J.C. Simon, Eds.
Groningen, The Netherlands: Sijthoff and Noordhoff, 1980.

C. Lantuéjoul and F. Maisonneuve, “Geodesic methods in quantitative
image analysis,” Patfern Recognition, vol. 17, pp. 177187, 1984.

B. Lay, “Recursive algorithms in mathematical morphology,” Acta
Stereologica, vol. 6/111 (Proc. 7th Int. Cong. for Stereology), Caen,
France, pp. 691-696, Sept. 1987.

H. Lorin, Sorting and Sort Systems (The System Programming Series).
Reading, MA: Addison-Wesley, 1975.

F. Maisonneuve, “Sur le partage des eaux,” School of Mines, Paris,
France, Internal Rep. CMM, 1982.

D. Marks, J. Dozier, and J. Frew, “Automated basin delineation from
digital elevation data,” Geoprocessing, vol. 2, pp. 299-311, 1984.

D. Marr, Vision. New York: Freeman, 1982.

M. Matheron, Random Sets and Integral Geometry. New York: Wiley,

1975.

[31]
{32]
(33]
[34)

[35]

[36]

137}

[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

(46]

597

(b)

@

Fig. 21. Hierarchical decomposition of a greek mosaic image: initial image I (a) mosaic decompositions of order 1 (b), 2 (c), and 3 (d).

F. Meyer, “Cytologie quantitative et morphologie mathématique,” Ph.D.
dissertation, School of Mines, Paris, France, 1979.

____, “Skeletons and perceptual graphs,” Signal Processing, vol. 16,
no. 4, pp. 335-363, Apr. 1989.

H. Minkowski, “Allgemein lehrsitze iiber konvexe polyeder,” Nach.
Ges. Wiss. Gottingen, pp. 198-219, 1897.

O. Monga, “An optimal region growing algorithm for image segmenta-
tion,” Int. J. Pattern Recog. Artificial Intell., vol. 3, no. 4, Dec. 1987.
J. Piper and E. Granum, “Computing distance transformations in con-
vex and non-convex domains,” Pattern Recog., vol. 20, pp. 599615,
1987.

T.K. Puecker and D.H. Douglas, “Detection of surface-specific points
by local parallel processing of discrete terrain elevation data,” Comput.
Vision, Graphics, Image Processing, vol. 4, pp. 375-387, 1975.

I. Ragnemalm, “Contour processing distance transforms,” in Progress
in Image Analysis and Processing, Cantoni et al.,, Eds. Cleveland, OH:
World Scientific, 1990, pp. 204—-212.

A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” J. ACM, vol. 13, no. 4, pp. 471-494, 1966.

M. Schmitt, “Des algorithmes morphologiques a I’intelligence artifi-
cielle,” Ph.D. dissertation, School of Mines, Paris, France, Feb. 1989.
1. Serra, Image Analysis and Mathematical Morphology. London: Aca-
demic, 1982.

1. Serra, Ed., Image Analysis and Mathematical Morphology, Part 11:
Theoretical Advances. london: Academic, 1988.

1. Serra and L. Vincent, Lecture Notes on Morphological Filtering,
School of Mines, Cahiers du Centre de Morphologic Mathématique,
Paris, France, vol. 8, 98 pp., 1989.

P. Soille and M. Ansoult, “Automated basin delineation from
DEMs using mathematical morphology,” Signal Processing, vol. 20,
pp- 171-182, 1990.

P. Soille, “Inversion d’images multispectrales par la morphologie
mathématique,” School of Mines, Paris, France, Internal Rep. CMM,
Jan. 1990.

S.R. Sternberg, “Grayscale morphology,” Comput. Vision, Graphics,
Image Processing, vol. 35, pp. 333355, 1986.

B.J.H. Verwer, P. W. Verbeek and S.T. Dekker, “An efficient uniform
cost algorithm applied to distance transforms,” JEEE Trans. Pattern
Anal. Machine Intell., vol. 11, pp. 425-429, 1989.

598 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991

[47] L. Vincent, “Graphs and mathematical morphology,” Signal Processing,
vol. 16, no. 4, pp. 365—-388, Apr. 1989.

[48] —, “Mathematical morphology for graphs applied to image descrip-

tion and segmentation,” in Proc. Electronic Imaging West, Pasedena,

CA, Apr. 1989, pp. 313-318.

L. Vincent and S. Beucher, “The morphological approach to Segmen-

tation: An introduction,” School of Mines, Paris, France, Internal Rep.

CMM, July 1989.

[50] L. Vincent, “Algorithmes morphologiques 2 base de files d’attente et
de lacets. Extension aux graphes,” Ph.D. dissertation, School of Mines,
Paris, France, May 1990.

{511 —, “Morphological transformations of binary images with arbitrary

structuring elements,” Signal Processing, vol. 22, no. 1, Jan. 1991.

L.J. Van Vliet and B.J.H. Verwer, “A contour processing method

for fast binary neighborhood operations,” Pattern Recog. Lett., vol. 7,

pp. 27-36, Jan. 1988.

[49]

(52]

Luc Vincent was born in Paris, France, on
December 10, 1964. He received the Engineering
degree from the Ecole Polytechnique in 1986
and the Master’s degree in computer science and
artificial intelligence from the Paris XI University
in 1987.

From April 1986 to June 1990, he worked at
the Center for Mathematical Morphology of the
Ecole des Mines de Paris under the guidance of
Prof. J. Serra, and defended his PhD in May 1990.
Then, after a short research period at the Center
for Mathematics of Amsterdam, he joined the Harvard Robotics Laboratory
(Division of Applied Sciences) as a Postdoctoral Fellow, sponsored by
Dassault Electronique. His research interests range from theoretical studies
(morphology on graphs, morphological filtering, etc.) to very practical appli-

cations taken from the fields of medical imaging, radar images, and digital
elevation models, among others. He has been especially active in image
segmentation and is involved in many recent algorithmic developments of
mathematical morphology. Over the last several years, he has also taught
numerous courses on morphology in Europe and the U.S.A.

Pierre Soille was born in Wavre, Belgium, on
June 26, 1966. He received the M.S. degree in agri-
cultural engineering from the University of Louvain,
Louvain-la-Neuve, in 1988.

Since 1988 he has been appointed by the Belgian
National Fund for Scientific Research as a research
assistant. He is presently carrying on his research
both at the Center for Mathematical Morphology of
the School of Mines of Paris and at the University of
Louvain. His research interests include digital image
processing and mathematical morphology. Within
these areas, he has been particularly involved in image segmentation and has
recently developed new methods for classifying and segmenting color images.
His results are being applied to remote sensing imagery, digital elevation
models, digital maps, and 3-D imagery.

