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ABSTRACT 

Medical imaging and computer-aided diagnosis (CAD) 
traditionally focus on organ- or disease-based applications. 
To shift from organ-based to organism-based approaches, 
CAD needs to replicate the work of radiologists and analyze 
consecutively multiple organs. A fully automatic method is 
presented for the simultaneous segmentation of four 
abdominal organs from 4D CT data. Abdominal contrast-
enhanced CT scans from sixteen patients were obtained at 
three phases: non-contrast, arterial and portal. Intra-
patient data is registered non-rigidly using the demons 
algorithm and smoothed with anisotropic diffusion. Mutual 
information accounts for intensity variability within the 
same organ during subsequent acquisitions and data are 
interpolated with cubic B-splines. Then heterogeneous 
erosion is applied to multi-phase data using the intensity 
characteristics of the liver, spleen, and kidneys. The erosion 
filter is a 4D convolution that preserves only image regions 
that satisfy the above intensity criteria. Finally, a geodesic 
level set completes the segmentation of the four abdominal 
organs. This 3D evaluation of abdominal data shows great 
promise as a computer-aided radiology tool for multi-organ 
and multi-disease analysis. 

INDEX TERMS: Abdominal imaging, liver, spleen, 
kidneys, segmentation, registration, contrast-enhanced CT. 

1. INTRODUCTION 

Medical imaging and computer-aided diagnosis traditionally 
focus on organ- or disease-based applications. Very little 
work has been presented toward the automatic simultaneous 
detection and segmentation of multiple organs or different 
types of abnormalities. 

Chronologically, Gao et al. proposed a 3D deformable 
surface model to segment the kidneys in CT [2]. They 
initialize the model manually and discuss its potential to 
segment other abdominal organs. Park et al. use a database 
of 32 hand-segmented CT abdominal scans to compute a 
mean image [5]. This is registered with thin plate splines to 

propagate the segmentation of liver, kidneys and aorta. 
Using a similar principle, a priori data from probabilistic 
atlases is used to initialize the segmentation of abdominal 
organs in [9] and [11]. Both methods use measures of 
relationship and hierarchy between organs and manual 
landmarks. Finally, multi-dimensional CT data from four-
phases are employed in [3,7]. Hu et al. [3] use independent 
component analysis in a variational Bayesian mixure, while 
Sakashita et al. [7] combine expectation-maximization and 
principal component analysis to segment abdominal CT. 

Our method is fully automatic, image intensity-based 
and does not use any a priori probabilistic information on 
shape or location. We use fewer CT phases than alternative 
work and propose a 4D convolution to detect abdominal 
organs, followed by a refinement of the segmentation by 
geodesic active contours.  

2. METHOD 

An example of multi-phase CT is presented in Figure 1. 
Although the acquisitions are done during the same session 
and intra-patient, note the abdominal motion especially at 
the liver, spleen and right kidney. Images from three phases 
of contrast-enhanced abdominal CT data (non-contrast, 
arterial and portal phases) are registered. Since data are 
acquired during a single acquisition session, inter-
acquisition motion is mainly due to breathing and cardiac 
pulsation, though small patient movements are also present. 
To account for motion artefacts, non-contrast and arterial 
phases are registered to the portal phase. A comparison 
between rigid, affine and non-rigid registration algorithms 
for intra-patient abdominal CT images is further performed. 
Data are interpolated with cubic B-splines. 

The demons non-rigid registration algorithm is 
employed, as the limited range of motion ensures partial 
overlaps between each organ over multiple phases [10]. The 
deformation field D of image I to match image J is governed 
by the optical flow equation and can be written as [10]  
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Figure 1: Multi-phase abdominal 4D CT data. 2D slices of 
3D volumes: (a) non-contrast, (b) arterial phase and (c) 
portal phase data. For visualization purposes, 3D volumes 
are aligned according to the position in the scanner. 

The multi-phase CT data is intra-modal, but the 
different levels of organ enhancement justify the use of a 
multimodal similarity measure. Mutual information m
accounts for intensity variability within the same organ 
during multi-phase acquisitions, where p(i,j) is the joint 
probability distribution of images I and J, and p(i) and p(j) 
the marginal distributions [4].  
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Registered data are smoothed using anisotropic 
diffusion to enhance the homogeneity of each abdominal 
organ and ensure boundary preservation. We employ the 
classic Perona-Malik anisotropy model [6].  

Given the smoothed data, intensity characteristics of 
four organs are extracted from a random 4D dataset, after 
verifying that the time series enhanced according to the 
acquisition phase. This analysis is required only once and is 
independent of the algorithm flow. It estimates a set of 
minimum and maximum 3D intensities for the four 
categories of organs to segment at each level of 
enhancement: minp,r and maxp.r, where p=1..3 for liver, 
spleen and kidney (assuming the left and right kidney share 
the same range of intensities), and r=1..3 for pre-contrast, 
arterial and venous phases. 

The intensity characteristics imbedded in minp,r and 
maxp.r were input to an erosion filter that is applied to multi-
phase data. A 4D array K(x,y,z,t)=It(x,y,z) is created from the 
multi-phase data, where t=1..3 for pre-contrast, arterial and 
venous phases. The heterogeneous erosion was implemented 
as a convolution with a 4D filter f that preserved and labeled 
only regions for which all their voxels satisfy the intensity 
criteria (given the erosion element). S represents the labeled 
image and lq the labels (q=1..4 for liver, spleen, left kidney 
and right kidney). 
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All the considered organs have similar Hounsfield units 
(HU) before enhancement; hence the processing burden of 
the 4D filter is reduced by including data from only two 
phases: arterial and portal. This allows eliminating the blood 
vessels and the heart, some of the major sources of error for 
liver segmentation. Connected component analysis of 
labeled data facilitates reducing additional false positives. 
Thresholding in the non-contrast data corrects for residual 
errors from the stomach, while the spine is eliminated for its 
high standard deviation and lack of enhancement between 
phases.  

Finally, the labeled data are used as input level image 
(zero-level) L0 into a geodesic active contour L [1]. The 
venous phase CT scan (I3) provides the feature image, while 
the sigmoid of the gradient of I3 supplies an edge image Ie, 
with α and β computed from ∇I3. The weights w1, w2 and w3
control respectively the speed c, curvature k and attraction to 
edges [1]. 
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The segmented organs have their margins eroded as a 
result of the convolution with the 4D filter. Unlike a typical 
morphological dilation, the active contour accounts for the 
eroded margins of the segmented organs using intensity, 
edge and curvature information. Moreover, the intensity and 
edge information input into the geodesic active contour 
provides accurate data to correct for the possible bias in the 
estimation of the intensity characteristics minp,r and maxp.r. 

3.  RESULTS 

The 16 studies had three temporal 3D acquisitions. The first 
image is obtained before contrast. Then the patients are 
injected with 130ml of 1SOVUE-300 and two more 
contrast-enhanced data acquisitions are completed during 
arterial and portal phases. The distinction between phases 
was performed using fixed-delays. No patients had any of 
the four organs (liver, spleen, left and right kidney) or parts 
of them removed, though abdominal abnormalities were 
present in all cases. The CT data were collected using GE 
LightSpeed Ultra and GE LightSpeed QX/I scanners (GE 
Healthcare). Image resolution ranged from 0.62 x 0.62 x 5.0 
mm3 to 0.82 x 0.82 x 5.00 mm3. Image size ranged from 512 
x 512 x 41 voxels3 to 512 x 512 x 147 voxels3.  

The implementation uses Visual C++ 8.0 (Microsoft), 
OpenGL (SGI) and the Insight Segmentation and 
Registration Toolkit (ITK) 2.4 (Kitware, Inc.). 3D rendering 
and visualization of the segmentation was generated using 
VolView (Kitware, Inc.)
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Figure 2: Intra-patient 3D registration. This example shows 
results of registering data from arterial and portal phase: (a) 
a 2D slice from portal phase; (b) the corresponding 2D slice 
at arterial phase, aligned by the position in the body, as seen 
at the spinal cord; (c) the registered image from (b) using the 
demons algorithm; (d) the difference image between (a) and 
(c) after non-rigid registration; (e) the registered image from 
(b) using affine registration (d) the difference image between 
(a) and (e) after affine registration; (f) the difference image 
between (a) and (e) after affine registration.  

Unsurprisingly, non-rigid registration gives better 
alignment at organ level. The largest objects in the 3D 
volumes, in this case the liver, govern both rigid and affine 
registrations and introduce biases in the other abdominal 
regions. A smoother interpolation using cubic B-splines 
supports the non-rigid deformations better than an intensity 
preserving nearest neighbor interpolation. Registration 
results are validated by difference images between intra-
patient registered data from multiple phases, which reflect 
the superior results of non-rigid registration.  

Figure 2 illustrates an example of intra-patient 
registration of data from arterial and portal phase. Although 
the affine transform gives satisfactory results, the 
deformation is governed by the liver; note the improved 
alignment at the level of the left kidney and spinal cord 
using a non-rigid transform.  

We noted empirically that the spleen and kidneys could 
be segmented correctly by 3D heterogeneous erosion in the 
portal phase. However, the liver requires a minimum of two 
phases (arterial and portal) for segmentation. The 4D 

convolution is implemented to detect the four organs 
simultaneously. 

The segmentation of the four organs (liver, spleen, left 
kidney and right kidney) is validated by overlaying the 
labeled data on the CT volumes. Each organ is correctly 
detected, as confirmed by experienced radiologists, and the 
segmentation results are robust throughout the database. 
Errors in estimation at the top and bottom slices of each 
organ are mainly due to low spatial resolution (5mm slice 
thickness). In a third of all cases, small areas of the heart 
muscle are labeled as liver. The main sources of errors are in 
the vena cava, only partly enhanced in the arterial and portal 
phases. Segmentation results in the axial plane are presented 
in Figure 3 and three dimensional renderings of the 
segmented data are shown in Figure 4. 

The use of fixed-delays during image acquisition was a 
further cause of enhancement variability in individual 
organs, especially during the arterial phase acquisition. 
Automatic bolus tracking would be more appropriate for our 
application. Furthermore, the presence of abdominal 
abnormalities in our database adds aberrant values to the 
organ 3D intensity model. This database was used due to the 
unavailability of contrast-enhanced CT data of normal 
controls. 

Figure 3: Segmentation results. The segmentation of liver, 
spleen and kidneys using the proposed algorithm are shown 
using white contours on CT data. We show 2D slices along 
the 3D CT volume from left to right and top to bottom. 
While the segmentation of four organs is reliable, the largest 
error appears in the vena cava, which is assimilated into the 
liver, as indicated by the arrow. 
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Figure 4: Multi-organ 3D volume rendering of four patients. 
The liver, spleen, right kidney and left kidney are presented 
as segmented by the proposed automatic algorithm.  

5. DISCUSSION 

Medical imaging and computer-aided diagnosis traditionally 
focus on organ- or disease-based applications. Very little 
work has been presented toward the automatic simultaneous 
detection and segmentation of multiple organs or different 
types of abnormalities. A multi-organ approach uses
information on inter-organ boundaries and relative position, 
as well as permits o more comprehensive analysis toward 
methods for full abdominal computer-aided radiology 
(CAR) and diagnosis (CAD). 

A fully automatic method is presented for the 
simultaneous segmentation of four abdominal organs from 
sixteen 4D CT data using heterogeneous erosion and level 
sets. Intra-patient data is registered using a non-rigid 
transformation and organ areas segmented by 4D 
convolution. This first segmentation is input into a refining 
geodesic active contour. Data from two CT phases 
contribute to the robust labeling of liver, spleen, and left and 
right kidney.  

The automatic method employs a 3D intensity model; 
no a priori probabilistic on shape or location is used. We 
also exploit fewer CT phases than alternative work and 
propose a 4D convolution to detect targeted objects in the 
estimated range of intensities.  

This 3D evaluation of abdominal data shows great 
promise as a clinical tool for multi-organ and multi-disease 
analysis. The future development of the study will allow 
building abdominal digital atlases, modeling abdominal 
variability, analyzing multi-organ patient data, monitoring 
treatment, interventions and disease development. 
Essentially, future work will focus on the development of 
multi-organ computer-aided radiology. 

For immediate work, we will analyze images of higher 
resolution, normalized in intensity, and will include normal 

controls for quantitative validation and correction of 
segmentation errors. Other abdominal organs (pancreas, 
stomach, gallbladder, etc.) will be simultaneously addressed.  
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