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ABSTRACT

The hippocampus is among the first structures affected in
Alzheimer's disease (AD); hippocampal MRI volumetry is a
potential biomarker for AD but is hindered by the
limitations of manual segmentation. We propose a fully
automatic method using probabilistic and anatomical priors
for hippocampus segmentation. Probabilistic information is
derived from 16 young controls and anatomical knowledge
is modeled with automatically detected landmarks. The
results were compared with manual segmentation on data
from 16 young healthy controls, with a leave-one-out
strategy, and 8 AD patients. High accuracy was found for
both groups (volume error 6% and 7%, overlap 8§7% and
86%, respectively). The resulting volumes were used to
discriminate between 25 elderly subjects, 25 early AD
patients and 24 patients with amnestic mild cognitive
impairment (MCI). The classification proved accurate with
87% of the AD patients and 74% of the MCI patients
correctly classified with respect to the elderly controls.

Index  Terms—  Segmentation,  Hippocampus,
Alzheimer's disease, Classification

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia; its early and accurate diagnosis is challenging.
The hippocampus (Hc) is a gray matter structure of the
temporal lobe known to be affected at the earliest stage of
AD [1]. Hippocampal volumetry on magnetic resonance
images (MRI) can thus constitute a useful diagnostic tool
[2]. Up to now, hippocampal volumetry mostly relies on
highly time-consuming manual segmentation, which is
rater-dependent, and not feasible in clinical routine.

Automatic segmentation of the hippocampus would
overcome these limitations and provide a useful biomarker
of AD. The incomplete definition of Hc boundaries on MRI
scans makes the use of prior information necessary for
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ensuring accurate and robust automatic segmentation. Prior
knowledge can come from statistical information on shape
[3,4], deformations [5] or from registering a single subject
atlas template [6]; nevertheless, these methods may be
unsuitable for diseased structures. We previously proposed
a semi-automatic method [7] for the segmentation of Hc and
the amygdala (4m), based on simultaneous region
deformation driven by anatomical priors, through
formalized anatomical relationships derived from stable
anatomical patterns [8]. Nevertheless, the method required
manual initialization (bounding box and two voxel seeds).

Global information given by an atlas could allow
automatic initialization; furthermore, segmentation using
probabilistic information [9,10] offers more thorough global
spatial knowledge compared to single object atlas.

To eliminate any user intervention from the procedure,
we introduce a hybrid method driven by anatomical and
probabilistic prior knowledge [11]. Anatomical information
is derived from local anatomical patterns that are stable in
controls and patients, around landmarks automatically
detected during the deformation. Probabilistic information is
derived from an atlas built from the registration manually
segmented Hc and Am for 16 young healthy subjects.
Initialization is obtained from global information and
deformation is constrained by local information (both
anatomical and probabilistic).

In this paper, we validate this segmentation procedure in
patients with AD and assess the ability of resulting Hc
volumes to classify subjects with normal aging, MCI
(patients with impaired memory but without dementia) and
early AD with no prior knowledge on their diagnosis.

2. FULLY AUTOMATIC SEGMENTATION
The segmentation is based on the alternate deformation
of two objects, one for Hc and one for Am, from two initial

objects, through homotopic region deformation. It is
modeled in a Bayesian framework, the deformation being
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driven by an iterative energy minimization. This energy is
defined with a functional made of five terms: global and
local data attachment, regularization and volume and
surface terms [7]. The initial objects are determined from
the probabilistic atlases, inside an automatically extracted
bounding box. The energy functional is then iteratively
minimized for Hc and Am, with additional constraints
derived from the anatomical and probabilistic priors.

2.1. Probabilistic Atlas

The datasets from N (here N=16) young healthy subjects
were manually segmented by an expert following a protocol
ensuring coherence in the three planes [7]. For each of the
atlas subject, S; {i=1...N}, the transformation 7; to the MNI
standard space is then obtained through the unified
registration and segmentation module of SPMS5 [12] using
the native data. The transformation (expressed on a basis of
~1000 cosine functions) is then used to propagate the
manually labeled binary masks (Hc' and Am') to the MNI
space. The atlases PAy,. and PAy, are created as follows:
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where v is any voxel in the MRI space (2, PAy.(v) and
PA ,(v) are the probabilities that v belongs to Hc and Am.
The atlas creation step is done only once.

2.2. Initialization

The first step is to compute forward and backward
transformations 7 and 7~ between native and MNI spaces.
Individual atlases /PAy. and IPA,, are created by back-
registering the atlases PAy, and PA,, using T

IPAy,. and IPA,, are used to automatically define left
and right bounding boxes around the structures of interest,
as the smallest boxes embedding the non-null probability
values in both atlases, with an extra one-voxel margin, for
the left and right hemispheres, as illustrated in figure 1 a.

Rss? 51 coronal _)‘ 2 £ ?{lalw

a0 '\' "“\
¢

sagittal "

-
- 1mm?3

1 erosion

threshold +
regularisation

b. IPAw & IPA,.. DTN v
Figure 1: initialization: a. bounding boxes, b. initial objects

Atlas mismatch in the bounding box is automatically
detected and corrected when necessary. For this, it is
assumed that if /PAy,. is locally mis-registered, the 0.5-
probability object will cover a wider intensity range than if
IPAy. is correctly registered. The 0.5-probability object for
Hc is defined as {v, IPAy.(v)>0.5}. Correction is done by
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moving [PAy. in its 6-neighborhood to minimize the
difference in intensity ranges.

The last step of the initialization procedure is to identify
initial objects for Hc and Am, defined as the eroded
regularized maximal probability objects (figure 1 b).

2.3. Deformation

The deformation is then driven by the iterative
minimization of the energy functional. At each iteration,
voxel candidates are determined at the border of the
deforming objects, for which re-classification will be
considered; meta-regions are automatically detected
(interface between Hc and Am, 11 types of anatomical
landmarks at the border of Hc and Am) [7]. The energy is
then minimized on the voxel candidates through an ICM
procedure; it is locally defined for each structure, with
specific features for meta-regions: the interface, to optimize
the competitive behavior, low and high likelihood zones
defined around the anatomical landmarks from intensity and
spatial local relationships, and three zones derived from the
probability maps: PZ’={v, IPA(v)=0}, PZ'={v, IPA(v)=1},
PZ"7={v, 0.75<IPA(v)<1. These specific features are
included in the anisotropic non-stationary regularization,
comparing Np(v) number of O-labeled neighbors of v with a
standard value N, a tolerance o; to prevent holes and wires:

E40)- [ﬁ 7t (o () azm)]f.

o

=0, except for voxels detected as "tail of Hc" given by a
local pattern (¢ then increases from 0 to 16 in the bounding
box posterior half). =1, except for voxels in low and high
likelihood zones (#“=0.5 in O-unlikely and 2 in O-likely
zones). ¥7=1, except for voxels in the three probability
zones (F#(v)=0.75 in PZ’, ¥*v)=2 in PZ', ¥*(v)=1.5 in
PZ"7). These parameters constrain the deformation by
decreasing the regularization energy in O-likely zones and
vice-versa. They are chosen empirically so as to be
consistent with the &/ and #* values given in [7].

3. EVALUATION OF SEGMENTATION ACCURACY

3.1. Evaluation Data

The segmentation was validated with a leave-one-out
strategy on the data from 16 young controls used to form the
atlases, and on data from 8 patients with AD, using the 16-
young-healthy-subjects atlas. All data were acquired on a
GE 1.5T scanner with an IR-FSPGR sequence [7]. The
average hippocampal volume derived from manual
segmentation was 1.9cm® (1.4-2.6) in AD patients,
compared to 2.9cm’ (2.1-3.6) for the young controls.
Performance evaluation was done by comparing automatic
and manual (reference) segmentation results. Four
quantitative indices are used, as given in table 1: error in



volume (RV), Dice (DO) and Jaccard (JO) overlaps and
Hausdorf symmetric distance (DM). We compared the
results of the fully automatic approach with our previous
semi-automatic method [7] and with an "atlas-based"
segmentation given by the 0.5-level probability object.

rv(0*,0")| polo®,0") |s0(0°.0")| pm (0°,0%)
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Table 1: quantitative indices comparing a segmentation S with a
reference R (see text for details)

3.2. Validation in Young Controls

The results from the automatic segmentation were first
qualitatively analyzed revealing no major discrepancy.
Quantitative results are summarized in table 2, top rows.

| Index | semi-automatic[7] | 0.54evelobject |  automatic
16 young controls
RV(%) | 7240-14) | 10x6(1-24) | 6£4(0-13)
bo | DOCh) | 84£3(78-89) | 78:5(64-85) | 673 (32-99)
JO(h) | 72+4(64-79) | 64+6(47-73) | 77+4 (69-88)
DM (mm) | 45+15(25-9) |4+13(26-85)|36+1(23-59)
RV(%) | 12£7(1-27) | 10£8(0-33) | 9£6(0-26)
| DO(%) | 8144(69-88) | 83+4(70-89) |84£4(75-91.1)
JO (%) 69 +6(53-78) 70+6(54-80) | 73+6(60-84)
DM (mm) | 39+09(28-6) |28+05(1.9-4)|32£06(19-5)
8 patients with AD
RV(%) | 9:7(00-21) | 27£16(0-56) | 7£4(1-13)
bo | DOCK | 84£3(78-88) | 68:28(55-80) | 863 (81-91)
JO(h) | 72+4(64-79) | 52+9(38-67) | 75+4 (68-83)
DM (mm) | 6.5+2.4(4.1-14) [49+1.8(3.2-9.7)[48+1.8(28-9.7)
RV(%) | 16:13(1-42) |22%16(23-43)| 16£13(2-52)
| DO(4) | 76+7(0-87) | 71+9(57-83) | 826 (72-90
JO(%) | 62+9(43-77) | 55+10(40-72) | 69+8 (56-82)
DM (mm) | 45+ 0.9 (3.1-5.7) |41+0.9 (2.7 -55)|32+ 0.8 (19 49)

Table 2: value of the quantitative indices (mean +standard
deviation (min-max)) for controls and patients with AD

All indices are consistent with improved segmentation
using the automatic procedure.

3.3. Validation in Patients with Alzheimer's Disease

The automatic segmentation results are 3D-consistent

and qualitatively correct, as shown in figure 2.
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Figure 2: 3D-renderings (automatic and manual segmentation),

and sagittal slices showing automatic segmentation outline
overlaid on manual segmentation and IPAy. and IPA 4, for the

best and worst results in AD patients.
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All indices are consistent with improved segmentation
using the automatic procedure (table 2, bottom rows).

4. APPLICATION: CLASSIFICATION OF SUBJECTS

To assess whether automatic segmentation can provide a
biomarker for AD, we tested the ability of Hc volumes to
discriminate between AD patients and elderly healthy
subjects, and, in addition, with amnestic MCI.

4.1. Subjects

We studied 25 patients with AD (14 females, age +
standard-deviation (SD) = 73 + 6 years, range = 62-81
years, mini-mental score (MMS) = 24.4 + 2.7, range = 19-
29) and 24 patients with amnestic MCI (14 females, age =
SD = 74 + 8§, range = 55-87, MMS = 27.2 + 1.4, range =
24-29) which were recruited at the Centre Hospitalo-
Universitaire (CHU) of Caen. MRI data from AD and MCI
patients were compared to data from 25 elderly healthy
controls (12 females, age = 64 + &, range = 51-84). A 3D
Tl-weighted MRI (voxel size 0.93x0.93x1.5mm’) was
acquired on a GE 1.5T scanner using a SPGR sequence.

4.2. Segmentation and classification

Using the fully automatic method, we segmented the
hippocampus and the amygdala in all subjects using the
default parameters of the algorithm. Volumes were
normalized by the total incracranial volume derived from
SPM5 segmentation maps; left and right volumes were
averaged. Group differences were assessed using Student’s
t-test (a robust estimate of the p-value was computed using a
bootstrap method [13]). For the classifications of AD vs
controls, MCI vs controls and AD vs MCI, each participant
was assigned to the closest group as follows. Robust
estimates of classification rate, sensitivity and specificity
were computed with a bootstrap approach for training set
selection. In this procedure, we drew without replacement
approximately 75% of each group to obtain a training set.
On this training set, we estimated the mean normalized Hc
volume for each group. Each participant in the remaining
25% was then assigned to the group which mean was
closest to the volume of this participant. The procedure was
repeated 5000 times.

4.3. Results

The results of group analysis and individual
classification are presented in table 3 for Hc.

As for Am, we also found significant group differences
between all groups of subjects (AD vs controls: 1.08 vs
1.27, p<0.001; MCI vs controls: 1.18 vs 1.27, p<0.05; AD
vs MCI: 1.08 vs 1.18, p<0.05). However, using 4m volume
together with Hc volume in a linear discriminant analysis
procedure did not improve the classification.



AD vs controls | MCI vs controls AD vs MCI

Mean Hc volume (cm3)|  1.83 vs 2.59 2.14vs 2.59 1.83vs 2.14
Mean Vol. reduction -29% -17% -14%
Statistical significance p<0.001 p<0.001 p<0.01
Class. Rate 87% 74% 73%
Sensitivity 87% 79% 67%
Specificity 88% 69% 78%

Table 3: Upper three rows: group comparisons of Hc volumes.
Lower three rows: classification rate, sensitivity and specificity for
classification between AD patients, MCI patients and elderly
controls.

5. DISCUSSION

The fully automatic hippocampus and amygdala
segmentation method presented here has proven to be
accurate for both young healthy subjects and patients with
Alzheimer's disease. The process is fast (15 minutes, 10 for
the registration and 5 for bilateral segmentation) and is
implemented in a user-friendly environment (Brainvisa:
http://brainvisa.info).

No algorithm or atlas modification or parameter tuning
was necessary for application to AD patients. This was
made possible by the hybrid anatomical and probabilistic
prior. In fact, the new method is more robust to pathology
and acquisition parameters than the semi-automatic method
[7], in which default parameters were different for the two
cohorts. Furthermore, the partial integration of probabilistic
maps as a constraint in the deformation process makes it
more robust to pathology than methods that rely strongly on
a single atlas. In fact, it was previously demonstrated that
segmentation based on the registration of a single subject
atlas does not perform satisfactorily when the atlas does not
belong to the same disease category as the subject [14].

Validation studies on the segmentation of Hc in AD
patients are limited and difficult to compare because of
different patient samples and evaluation strategies [15,16].
A comparative study evaluated seven registration methods
for segmentation from the MNI, Harvard or disease-specific
atlases on 20 AD, 19 MCI patients and 15 healthy subjects
[14]. The fully deformable method with a disease-specific
atlas gave the best result, with JO~60% for all subjects
(better in healthy and MCI subjects than in AD patients)
compared to 75% in our study for patients with AD.

Using fully automatic volumetry of the hippocampus,
we were able to discriminate AD patients from controls with
87% accuracy. This is in line with previously published
results based on manual segmentation which report
accuracy between 82% and 90% for AD, e.g. [17,18]. As
for automatic methods, very few studies investigated the
classification of individual patients. Fischl et al. [9] detected
significant group differences in hippocampal volume but did
not investigate classification of individual participants.
Using both volume and shape features, Csernansky et al. [6]
reported a sensitivity of 83% and a specificity of 78%. The
accuracy that we report for MCI (74%) is also comparable
to that obtained using manual segmentation (between 60%-
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74%, e.g. [18,19]). However, the MCI group is
heterogeneous since not all MCI patients have incipient AD
[18]. The misclassified cases may thus not develop AD. In
future work, we will assess the ability of our method to
predict the conversion to AD in MCI patients.
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