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ABSTRACT

Two common imaging modalities for histological sections
are brightfield and fluorescence microscopy imaging.
Hematoxylin-Eosin (H&E) based brightfield microscopy has
been the traditional imaging technique for imaging
morphology, while an epi-fluorescent microscope is used for
immunofluorescent staining of specific proteins or
fluorescent in situ hybridization (FISH) for genetic based
analysis of DNA. Simultaneous imaging of both microscopy
modalities has been difficult due to optical and chemical
effects of the H&E dyes. We present a novel sequential
imaging and registration technique that enables brightfield
and fluorescent imaging on the same tissue section, hence
combining the traditional anatomic pathology with the newly
emerging field of molecular pathology. First the tissue is
labeled with fluorescent biomarkers, and imaged through a
fluorescence microscope, and then the tissue is re-labeled
with H&E dyes, and imaged again with traditional
brightfield. Our robust registration algorithms achieve
99.8% registration success rate on tissue micro array (TMA)
sections.

Index Terms— Image Registration,
Microscopy, Fluorescent Microscopy

Brightfield

1. INTRODUCTION

Hematoxylin-Eosin (H&E) staining has been used by
pathologists for over a hundred years [1]. Hematoxylin
stains cell nuclei blue, while Eosin, as a counter-stain, stains
cytoplasm and connective tissue pink. Due to the long
history of H&E, abundance of well-established methods for
use, and the tremendous amount of data and publications,
there is a strong belief among many pathologists that H&E
will continue to be the common practice in the next 50 years
[1]. However, new technologies, such as analysis of
molecular markers that provide functional and biological
information, have proven to be valuable for diagnosis,
prognosis, and survival rate analysis [2]. A general overview
of molecular labeling, high throughput imaging, and pattern
recognition techniques is presented by Price et al. [3].

The H&E staining has been favored due to its low cost, fast
preparation and permanence of stain on tissue, ease of image
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acquisition, and the extensive knowledge and training
behind it. On the other hand, molecular biomarkers are
increasingly being used and can provide protein-associated
information of the tissue that is not visible by H&E
techniques. Recently, immunohistochemistry (IHC) based
image analysis algorithms have been presented to quantify
the localization of proteins in the tissue [2]. Due to the
common use of H&E for diagnosis and staging, most image
analysis and automated quantification techniques presented
in the literature use H&E data as well [4-6].

With the current imaging techniques, it is not possible to
simultaneously image H&E dyes and immunofluorescent
molecular biomarkers due to fluorescent characteristics of
the H&E dyes, and due to chemical interactions of H&E
dyes with the fluorescently labeled antibodies. We present
sequential imaging and registration techniques that enable
different modalities presented digitally from the same
histological tissue section. Additionally, sequential imaging
and  registration  enables imaging of  multiple
immunofluorescent stains acquired in multiple steps rather
than conventional simultaneous multiplexing techniques.
This allows an order of magnitude increase in the number of
molecular markers to be imaged for the same tissue section.
Our techniques make it possible to explore un-examined
relationships between morphology, subcellular spatial
distribution of proteins and protein-protein interactions.

2. METHODS

The breast cancer tissue sections are first labeled with
fluorescent markers, and imaged with a fluorescent
microscope with the right excitation energy source tuned to
fluorochromes, and proper filters to collect the emitted light.
The non-uniform illumination variations are corrected by
parametric surface fitting techniques [7]. Multiple
fluorescent dyes can either be simultaneously imaged, or
added in a sequential process where between the steps the
dyes are bleached and re-added with different antibodies.

Next, the tissue section is stained using traditional H&E
dyes, and placed back under the microscope and the images
are acquired in the brightfield mode of the same region of
interest. The lighting pattern and color balance of the images
are then corrected similarly. Due to slide misplacement and

ISBI 2008



(c) (d)

Figure 1. Fluorescent images showing DAPI staining of
breast carcinoma tissue; (a) before correction, (b) after
illumination correction. Illumination correction can also
be used with brightfield DAB stained images, (¢) before
correction, (d) after illumination correction.

stage errors between each sequential step there is a variable
degree of misalignment between images. We use mutual
information based registration techniques to align all the
images and define all the modalities in the same coordinate
system. The registration failures are automatically detected
and reinitialized. The quality of the overall process is
controlled to detect tissue folding and loss.

2.1 INlumination Correction

We first correct the illumination pattern of the miscroscope
by estimating it from a series of images. The observed
image, /(x,y), can be modeled as a product of the

excitation pattern, E(x,y), and the emission pattern,
M(x,y). While the emission pattern captures the tissue
dependent staining, the excitation pattern captures the

illumination. In the logarithm domain, the observed image
can be modeled as a linear process;

log(I(x,y)) =log(E(x, y) +log(M(x,)). (1)
From a set of N images, let ] (x,y) denote an ordered set of

pixels. In other words, the pixels are sorted for any given
(x, y) location such that

Li(x, ) < 1(x,y) <-4, (x,y) - < Ty (x, ) (2)
Assuming that a certain percentage, p, of the image is
formed from stained tissue (non-zero backgound), then a
trimmed average of the brightest pixels can be used to
estimate the excitation pattern:

1 N
oy e DI GCED)
where K is set to an integer closest to N(1— p)+1. In our

By (x,y)= (3)

experiments, we set p to 0.1 (10%). In the above equation,
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Figure 2. (a) A brightfield H&E image of breast cancer
tissue section. (b) Computed nuclei component of the
H&E image. (¢) Multi-channel fluorescent microscopy
image. (d) The nuclei component of the fluorescent image
registered to the nuclei component of the H&E image.

the average emission pattern of the tissue is assumed to be
uniform. Since the images are recovered upto a scale factor,
we can drop the constant term introduced by the uniform
emission pattern. To overcome the limited sampling size at
each pixel location, we approximate the log of the excitation
pattern for the entire image with polynomials;
E'yp (x,3)= Z ai/xlyj~
0<i,j<psi+j<p

The parameters a, are solved by minimizing the mean

(4)

squared error [7]. The surface generated by the polynomial
coefficients are then used to correct the images. Figures
la&b show a fluorescent image before and after correction,
respectively. Each color channel of the brightfield images
are corrected similarly using Equations 1-4, with the only
difference that the pixel ordering is reversed in Equation 2.
Processing each color channel independently corrects the
color temperature of the light source as well (See Figures
lc&d).

2.2 Registration of Brightfield and Fluorescent Images
We design the experiments such that at each step of the
squential staining across modalities, we acquire images of
the nuclei. For brightfield images hematoxylin stains the
nuclei blue (Figure 2a), and for fluorescent images we use
DAPI to stain nuclei (blue channel in Figure 2c). The first
nuclei image is set as the reference image and each of the
subsequent nuclei images are registered to the reference.
Once the transformation parameters are estimated, then all
the channels at a sequential step are mapped onto the
reference coordinate system (Figure 3).
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Figure 3: (a) H&E image of a breast tumor tissue. Fluorescently labeled markers superimposed as green color on the H&E
image, (b) B-catenin, (¢) pan-keratin, and (d) smooth muscle a-actin, markers.

Given two set of nuclei images, one being the reference
image from the first step, 7((x,y) , and the second being

from the subsequent step (either the nuclei channel from an
H&E step or another fluorescent acqusition step for
multiplexing), 7(x,y), we find a transformation T*',

such that the image similarity measure, S, between 7" (x, y)
and ]i(")(Ti""(x, y)) is maximized,

argmax S(1"(x, y), I (T4 (x, ) (5)
T,k'l

There is a great number of cost functions, such as mean-
square-error, cross correlation, Kullback-Liebler distance,
gradient difference metric, mutual information, etc [8]. Due
to its robustness in registering multi modality images in this
work, we use a rigid transformation and a mutual
information based image similarity measure [9]:

S(TH) = — | T p(l»K|Tfk’l) (6)
(T = =22 x| T log o )

where p, p, ,and p,  are the joint, marginal moving, and

marginal fixed probability distribution of the image
intensities; T*' is the parameter vector of the rigid

transform; 7 and K are the intensity values in the respective
images. In order to improve the robustness of the algorithm,
we use a multi-resolution strategy to find the transform that
aligns the two images. The details of the minimization of
this cost function is described in [10, 11].

While the fluorescent images include dedicated nuclei
channels (such as DAPI), the nuclei images from the H&E
images are computed using the red, green and blue channels
as follows;

160 = (1 e VT ) Tl o)) (7)
where ¢ and y are tuning parameters for contrast and

gamma correction, respectively. Since the hematoxylin
stains the nuclei blue, the highest contrast is achived when
the blue channel is normalized by the geometric mean of the
red and green channels. Figures 2a and 2b show an H&E
image and its estimated nuclei component computed by the
above equation, respectively. A multi-channel fluorescent
image of the same tissue stained with molecular biomarkers
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with red representing a membrane related marker (B-
catenin), blue representing a nuclei related stain (DAPI),
green representing keratin, and magenta representing smooth
muscle a-actin is shown in Figure 2c. The registered DAPI
image in the H&E coordinate system is shown in Figure 2d.
The registration parameters estimated from the DAPI and
H&E images are then used to map all the other fluorescent
biomarkers at that sequential step into the H&E coordinate
system (Figure 3). The nuclear stain DAPI which is used for
registration is not shown in Figure 3.

2.3. Registration Failure Detection and Initialization

When multi-modality images obtained for a given tissue
sample are co-registered, the registration needs to be
validated prior to further analysis. For tissue micro array
(TMA) applications, we developed an automated system to
detect registration failures accurately, which then
automatically re-initializes the registration process for such
cases. The registration described earlier is performed on
individual images in local image coordinate space to obtain
rotation and translation parameters of a rigid transformation.
The images can be defined in a metric coordinate system,
using an image to microscopy stage calibration
transformation, T which  incorporates  scaling

transformations and stage coordinates of each image
recorded by the microscope. In the metric coordinate system
the slide has only one global transformation T, which can

be estimated using the individual transformation of all the
images,

(Z(Tﬂx,y)—n (T?(Tf"(w))))zj (8)

X,y

arg min z P
T -

where p is a non-quadratic error function that is robust to

our registration failures. The quadratic term measures the
warping of the transformation in the metric coordinate
system. The global transformation is solved by first
initializing by random sampling and Least Median of
Squares estimation [12] followed by M-estimators [13]. The
equation above is approximate because it does not
incorporate stage errors; nevertheless it is useful to detect
failures by checking high residual values, and reinitialize
these failures.



2.4. Quality Assurance

We developed automated quality assurance tools to detect

tissue folding, tissue loss, and registration failures for TMA

sections. Although the success rate of the registration

algorithm is 99.8%, possible failures are detected

automatically and presented to the user for confirmation. At

each step of sequential staining, the following metrics are

computed and any possible defect is presented to the user for

confirmation;

i) Different image-to-image similarity metrics to detect
tissue folding, or tissue loss,

ii) Nuclei count to differentiate tissue loss from other types
of defects,

iii) Registration accuracy of each tissue spot in a TMA
computed using the methods described in Section 2.3.

The results are stored in a spreadsheet including details
about the registration status, tissue quality, and tissue
viability. The spreadsheet can be modified easily if a user
makes an assessment different from the tool. The quality
assurance results are also illustrated graphically with
annotated thumbnail images of each tissue core arranged
according to the location of the cores in the actual TMA
slide. The tool also allows the user to visualize a
summarized representation of the tissue quality of all tissue
cores from multiple sequential steps all at once.

3. RESULTS AND CONCLUSION

We present techniques to digitally merge different
histological imaging modalities. This is a step forward in
integrating molecular pathology with classical anatomical
pathology. Superimposing the molecular biomarker
information on the H&E information provides a qualitative
tool for the pathologist to view both modalities on the same
tissue. This will provide great diagnostic value since the
pathways can now be easily superimposed on a standard
H&E slide. For example, all the molecular markers a
pathologist is interested in quantifying such as the
biomarkers shown in Figure 3b-d can be superimposed on
the traditional H&E view in Figure 3a. The pathologists can
look at the multi-channel image in the H&E mode, seeing
the traditional H&E image, but can also superimpose the
overlaying molecular information by clicking a button on the
computer screen. In this paper we only show a set of sample
markers to prove the concept. Any diagnostics markers such
as ER, PR, Her2 that are standard for breast cancer
diagnosis can be superimposed on the same tissue, where
pathologist can do morphological analysis as well.

We demonstrate our method using H&E dyes for brightfield
staining. As long as there are common information channels
across the modalities, our methods can be applied for other
staining protocols. We apply our techniques to TMAs, and
quantify the registration success rate as over 99.8%. Our
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local-global-local estimation framework detected 96.6% of
errors, and corrected 86% of these errors. We observed that
the automated tools for TMA applications increases the
quality assurance productivity up to fifteen times, compared
to manual validation techniques.

This application is not limited to the field of histopathology.
Other medical and bioscience applications can benefit from
the information provided with extended multi-channels. The
current trend in biology is towards adding as many markers
as possible to the specimen to visualize the pathways
simultaneously. Our approach provides a flexible framework
where the markers can be imaged sequentially without being
limited by optical, chemical, and biological interactions.
Incorporating functionality with morphology, our methods
enable better diagnosis, and design of large clinical studies
using TMAs.
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