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ABSTRACT

The MitoCheck project aims at identifying and characteriz-

ing the function of genes involved in mitosis in live human

cells. The genome wide RNA interference screen developed

for this purpose is based on automatic time-lapse microscopy

to analyze the phenotypes after knocking down each human

gene individually in cultured cells whose chromosomes are

fluorescently labeled. Such a screen produces large amounts

of digital image data (∼ 200.000 video sequences, i.e. over

18 millions of images) which can no longer be handled and

interpreted manually.

We have developed an image processing method consist-

ing of segmentation, feature extraction and automatic classifi-

cation, which assigns to each nucleus in each image one out of

several predefined morphological classes. Using the relative

cell counts in each of these classes, measured over time for

each experiment, we derive a phenotypic fingerprint for each

gene that allows clustering of genes by functional similarity.

This paper will give an overview over the computational

aspects of this screen. The complete quality controlled data

set and phenotypic measurements will be available after pub-

lication on http://www.mitocheck.org/.

Index Terms— Genome-wide RNAi Screen, Mitosis,

Biomedical Image Processing, Pattern Recognition

1. INTRODUCTION

One of the most challenging tasks in current molecular biol-

ogy is the functional description of genes and proteins on a

large scale in order to better understand the molecular regu-

lation of biological processes. An important element in this

quest is the use of loss-of-function screens, and in particu-

lar RNAi screens. In these screens, genes are characterized

by the phenotype resulting from their downregulation. By
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means of fluorescence microscopy, the functional role of the

downregulated genes can be studied in their physiological en-

vironment with high spatial and temporal resolution. Thanks

to recent technical developments in automated microscopy

and high-throughput transfection methods, image based as-

says are now applicable on a genome-wide scale [1].

Most of the microscopy based screens published so far are

endpoint assays. Depending on the biological question, this

can lead to misinterpreted phenotypes: as in a genome-wide

context, phenotypes are normally not predictable in time, it

is difficult to state whether an observed phenotype is actually

the primary cause or already a consequence of an earlier and

not observed phenotype. This limitation can be overcome by

using the power of time-resolved live cell imaging [2].

This strategy has been applied to perform a genome-wide

RNAi screen in human cells by time-lapse imaging: siRNA

transfection mixes have been spotted onto chambered cover-

glass tissue culture dishes. 18 hours before imaging, HeLa

cells stably expressing histone-GFP to report on chromosome

segregation and structure, are seeded on top of these arrays

and imaged for 48 hours (see [2] and [3] for experimental

details). ∼ 22.000 protein coding genes have been targeted

by at least 2 siRNA each, and for each siRNA, there are at

least 3 replicates. The readout of the screen is a data set of

∼ 200.000 video sequences over 48 hours, yielding ∼ 18 mil-

lion images (∼ 30TB). Obviously, it is neither possible nor

desirable to analyze this amount of data manually, but even

methods for automatic off-line analysis of this data set must

meet strict requirements concerning computational speed: 1s
of processing time per image leads to a total processing time

of ∼ 200 days on a single machine; even with heavy use of

parallel computing, this rules out time consuming segmenta-

tion or machine learning approaches.

We have developed a method for the automatic analysis

of this data set based on automatic recognition of nuclear

morphologies. Even though the fundamental biological ques-

tion we wanted to answer with this screen concerned mitosis,
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we can analyze the data set from a different point of view

in order to also identify genes involved in other important

biological processes, like cell migration. The screen there-

fore is not only the first genome-wide screen for mitosis by

time-lapse imaging in a human cell line, but additionally sup-

plies us with time-resolved phenotypic description for the en-

tire genome. The data will be available after publication on

http://www.mitocheck.org/.

2. AUTOMATIC IDENTIFICATION OF MITOTIC
PHENOTYPES

In the following, we will call each video sequence an exper-
iment. For each siRNA (i.e. each downregulated gene) we

have at least 3 experiments. The algorithm we have developed

in order to identify mitotic phenotypes is based on a classical

object recognition pipeline applied to every single image:

1. Images are segmented, i.e. the single nuclei are de-

tected.

2. For each nucleus, features are extracted in order to de-

scribe the shape and the texture of the objects.

3. These features are then used in order to classify each

nucleus into one out of several predefined morphologi-

cal classes.

4. Each experiment is characterized by a time series of nu-

clei counts in all different morphological classes. From

this representation, we can derive a score for each ex-

periment.

A detailed description of each of these steps would go

over the scope of this paper. We will therefore just give brief

descriptions of the developed methods without discussion of

the results.

2.1. Segmentation

Fig. 1. Segmentation of nuclei: (a) Original image, (b) Appli-

cation of a local threshold without sharpening, (c) Application

of a local threshold with sharpening (toggle-mappings)

The segmentation step aims at identifying the nuclei. As

we can see from figure 1(a), the segmentation task is not very

difficult: nuclei appear as bright objects on dark background.

As the background is not always uniform, some background

approximation must be subtracted from the image before a

global threshold is applied. Moreover, close nuclei tend to be

segmented as one nucleus due to the blurring of the optical

system. As a consequence, we propose to apply a sharpening

algorithm (toggle-mappings) in order to separate close nuclei

from each other (see figure 1(b) and 1(c)).

As a result of the segmentation step, we obtain a partition

of the image plane into disjoint regions, one of which repre-

senting the background, and all others the nuclei. We denote

the set of foreground pixels as X =
⋃

i=1...N Xi, where Xi

are the connected components of X , i.e. each Xi corresponds

to one nucleus.

2.2. Feature extraction

After the automatic detection of the nuclei, the next step is to

characterize them by means of quantitative descriptors. Many

features have been proposed in the literature for similar recog-

nition problems [4], [5], but it is often necessary to also use

some dedicated features capable of differentiating between vi-

sually close classes.

Features can be divided into two groups: shape features

describing the geometric properties of Xi and texture features

describing the spatial grey level distribution of the image on

the regions Xi. From a biological point of view, shape fea-

tures are supposed to be able to distinguish between normal

and abnormal interphases (e.g. multinuclear morphologies),

whereas texture features should be able to characterize classes

where chromatin is condensed (metaphase, prometaphase,

etc.).

As texture features, we have used basic features (like

mean intensity, grey level variation, etc.), Haralick features

[6], statistical geometric features [7] and features based on

mathematical morphology. As shape features, we have used

basic descriptors (like size, perimeter, etc.), moment based

features [8], features based on mathematical morphology and

convex hull features.

Xi

g(Xi)

Δ1

g(Δ2)

g(Δ1)

g(Δ3)
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Δ3

Fig. 2. Features defined for the convex hull of the nuclear

region Xi

To illustrate how these features are designed, we will de-
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scribe this last group of features. The normal nuclear mor-

phology of an interphase cell has an elliptic 2D projection and

appears therefore convex in our images; aberrant morpholo-

gies often observed as a consequence of a mitotic defect (e.g.

problems in chromosome segregation) mostly show concav-

ities, which can be characterized by features defined on the

convex hull C(Xi), i.e. the smallest convex set containing

Xi. Let Δ = C(Xi) \ Xi and Δk, k = 1, . . . Nc its con-

nected components (see figure 2). We define as features:

• the number of connected components Nc.

• the ratio of the surface of Xi to the surface of C(Xi).

• the ratio of the perimeter of Xi to the perimeter of

C(Xi).

• the 3 maximal areas of the connected components of Δ.

These values give a hint of how symmetric the concav-

ities are.

• average distance of Δk to the center of Xi:∑Nc

k=1 ‖g(Xi) − g(Δk)‖ #Δk

#Δ , where g(·) denotes the

center of gravity (see figure 2) and #· the number of

elements.

• the average area of Δk.

This set of features is well suited for the distinction be-

tween normal and abnormal morphologies and even describes

- to a certain extend - different kinds of abnormalities, rele-

vant for different mitotic or non-mitotic defects.

In total, we have extracted 190 features and have therefore

obtained a detailed quantitative description of each nucleus.

How these features can then be used in order to assign one out

of several predefined morphological classes to each nucleus

will be shown in the next section.

2.3. Classification

For the classification step, we have followed a classical super-

vised learning approach: first, we have defined morphological

classes we expect to cover the whole genome-wide data set.

Then, we have generated a training set, i.e. a set of labeled

nuclei for each of these classes and covering their range of

variability. Finally we have used this training set in order to

train an SVM classifier.

2.3.1. Class definitions

The most difficult part of this procedure is the definition of

meaningful classes covering all possible morphologies in the

genome-wide data set, and we are not yet able to present

an efficient solution to this problem. It is of course an easy

task to define wildtype morphologies (e.g. the morphological

classes corresponding to mitotic phases), but unfortunately,

this is not appropriate if we are dealing with a genome-wide

data set: we are expecting many more different and possibly

unknown morphologies. One way to derive a set of morpho-

logical classes is to manually look at a set of experiments and

to determine manually the biologically meaningful morpholo-

gies. This set of experiments should contain positive and neg-

ative controls, genes known from literature and, most impor-

tantly, genes for which the proliferation rate was particularly

low. Obviously, there is no formal proof that the morpholo-

gies we have found in this way are really representative for the

whole data set, but it seems a reasonable working hypothesis.

On the other hand, a more straight forward and much

more efficient method would be the application of unsuper-

vised learning strategies in order to derive all important mor-

phological classes from the data set. However, our data set

consists of ∼ 1 billion feature vectors (nuclei), containing 190

features each. Such amounts of data are difficult to handle by

classical clustering methods, and over and above that, it is far

from being sure to obtain biologically meaningful classes by

an unsupervised approach: biological and visual proximity do

not always coincide.

We think that the development of methods able to derive

morphological classes directly from large data sets will be a

major contribution to image based screens: as the morpholo-

gies change with the assay (with the marker, cell line, etc.),

the definition of a set of meaningful and detectable classes

will be an issue also for upcoming screens, and probably

be the major computational bottleneck as long as no useful

method is available.

2.3.2. Classification with support vector machines

The last step is now to assign to each nucleus represented by

the feature vector x one of the predefined classes.

Support Vector Machines (SVM) are one of the most pow-

erful methods in the domain of supervised learning; they have

outperformed many other methods in many applications, they

can deal with large number of features, are robust, easy to pa-

rameterize and computationally effective. SVMs have been

used successfully to a number of similar problems, like pro-

tein localization ([4], [5]), and the automatic identification of

mitotic phases ([2], [9]).

We have used an RBF kernel in order to transform the

feature vectors into a higher dimensional space before apply-

ing a linear classifier. The parameters of the SV M have been

obtained by the classical grid search strategy. Our training

set contained 2957 manually labeled nuclei; we obtained an

overall accuracy of 86.1% with 10-fold cross validation.

2.4. Detection of mitotic phenotypes

After classification, each experiment is represented by a set

of cell count kinetics. After a smoothing step, these time

series can be compared to the corresponding time series of

the negative controls: the maximal difference over time be-

tween the experimental curve for each morphological class
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and the corresponding average curve of the negative controls

is a good indicator for the penetrance of the phenotype in the

given class.

In order to obtain a score for each siRNA rather than for

each single experiment, we take the median of all replicates

with the same siRNA. If in a morphological class relevant to

the biological process under study, this value is higher than

a certain manually fixed threshold we call the siRNA a hit in

this class.

In addition to the information if an siRNA is actually giv-

ing a hit with respect to the biological question under study,

we obtain a phenotypic fingerprint by taking the maximal

penetrances in the different classes as descriptive features.

Such fingerprints allow one to cluster siRNAs into groups of

similar phenotypic characteristics.

3. SCREENING FOR NUCLEAR MOBILITY

In addition to mitosis, this data set contains useful informa-

tion about other biological processes. By a more thorough

exploitation of the time information for instance, it is possi-

ble to derive a list of genes involved in cell migration.

For this, we track each individual nucleus, i.e. we identify

for each nucleus at time point t its predecessor (i.e. the same

nucleus at time point t − 1). The euclidean distance between

the centers of gravity of the same nucleus at t and t − 1 can

be seen as a mobility measure for this nucleus. By taking the

average mobility measure over all time points and all nuclei,

we can easily define a mobility measure for the experiment.

Movement can be caused by many phenomena; dead cells

for instance tend to lose adhesion resulting in a high mobility.

Therefore we take into account only uncondensed nuclei, i.e.

nuclei belonging to morphological classes where the DNA is

not condensed (e.g. interphase). After subtracting a correc-

tion term in order to compensate for microscope positioning

problems, we can easily derive a list of genes resulting in in-

creased nuclear mobility. A more detailed analysis of the to-

tal trajectories during the whole experiment leads to a list of

genes involved in cell migration.

4. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the computational aspects of

a genome-wide RNAi screen by time-lapse microscopy: we

have shown how we can derive a phenotypic fingerprint for

each of the targeted genes by application of image processing

and machine learning methods. The most time-consuming

steps of this strategy are the identification of a set of prede-

fined classes and the generation of the corresponding train-

ing set. The development of unsupervised or semi-supervised

methods able to generate these sets automatically or at least

to ease their establishment seem to us the most challenging

and important future steps.

Furthermore, we see that the same data set supplies us

with more information than just that related to mitosis: we

have shown a sketch of an algorithm dedicated to the identifi-

cation of genes with increased nuclear mobility.
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