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ABSTRACT

We propose a deformation-based approach for fast and robust
segmentation of histological section images into multiple
tissues. Derived from deformable registration techniques, it
does not solely rely on information present in the image, but
uses a-priori information in terms of reference segmenta-
tions.
The experimental evaluation against state-of-the-art feature
based classifiers demonstrates the high performance in seg-
mentation accuracy and the effectiveness of this approach.
This serves as basis for processing high-resolution serial sec-
tion datasets comprising several thousand images towards
three-dimensional atlases of plant organs.

Index Terms— Image segmentation, Image registration,
Modeling, Biomedical microscopy

1. INTRODUCTION

Digital models of biological objects have proven to deliver
new facilities for the analysis of structural and functional
interrelationships as well as developmental processes in a
spatial or spatio-temporal context [1][2][3].
We are working towards the generation of a generalized 3-D
anatomical atlas of developing barley (Hordeum vulgare)
grains at different developmental stages. Serving as reference
framework for the integration, visualization, and exploration
of various data modalities, such inter-individual atlases sig-
nificantly promote the analysis of developmental gradients
and dynamics.
Considering different time points and individuals, models
are constructed on the basis of tens of thousands serial sec-
tion images composing gigabytes of image data, drastically
reducing the allowed computational complexity in the model-
generation pipeline.
The gain in resolution and histological detail with serial sec-
tion data comes with additional expenses in processing, since
the object of interest is essentially physically destroyed for
digitization. This necessitates a fast and robust method for
the expert-based segmentation of serial section data, aside
from the use of well tuned and adapted algorithms for recon-
struction.
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Fig. 1. Perspectives of a digital barley grain. A volume ren-
dering of standardized and registered stack of serial section
images. The reconstruction procedure yields an intact grain
histology, enabling virtual sections in any desired direction.
The dataset is approximately 4 GB.

2. IMAGE ACQUISITION AND PREPROCESSING

The imaging of functional units and tissues in sectioned plant
material on a micrometer scale using light microscopy re-
quires preparation including the treatment with a contrasting
agent. Plant material is cut into 3 μm thick slices with a mi-
crotome and subsequently digitized with a light microscope
at a spatial resolution of 1, 83×1, 83 μm per pixel1, compos-
ing a dataset of roughly 2,000 images per grain.
To account for disturbances in the images the region-of-
interest (ROI) must be masked against the image background
since particles occur on the microscope slides, mostly be-
ing high-frequency noise, using edge-detection and blob-
analysis.
Arbitrary positioning and orientation of the grain objects on
the microscope slide are standardized employing the well-
established Principal Axis Transform (PAT), also yielding a
bulk-transform initialization for the subsequent stack regis-
tration.

1Colorspace analysis shows almost linear correlation for the contrasting,
therefore the images were digitized as grayscale-intensities with minimal
loss.
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The full image stack is rigidly registered to reconstruct the
sectioned object by finding an optimal superposition of all
images in the stack. We use a spatially extended image-
to-image metric of a weighted sum of SSD metric2 values
within a local neighborhood of slices for more robust stack
registration. The registration also includes re-sampling to
isotropic voxel-sizes. Figure 1 shows a volume rendering of
a reconstructed intensity dataset.

Fig. 2. Figure showing a raw-image cut-out with minor dis-
turbances and the standardized equivalent in uniform back-
ground. Colored regions show the segmentation into present
tissues.

3. SEGMENTATION OF SECTION IMAGES

Segmentation often is the crucial step where expert knowl-
edge is needed, since here the raw-data is abstracted towards
the purpose of the modelling. Labeled voxel-data is the ba-
sis for quantification and surface-based modelling of internal
structures.

In the segmentation step relevant biological structures
within an image I : Ω ⊂ R

2 �→ R
+ are recognized and

assigned a unique label S : I ⊂ Ω �→ {1, . . . , M} for M
tissues or classes.

An automatic segmentation of sections is characterized by
several requirements:

• A multitude of tissues must be recognized

• Images lack clearly defined edges and structures

• The identification of tissue types needs expert knowl-
edge

which necessitates the use of algorithms incorporating a-
priori information for robust multiclass-segmentation, where
solely intensity-based techniques are clearly unfeasible.
One possible encoding of a priori information (e.g. class
numbers and densities) are manual reference segmentations
of sample images, thereby facillitating segmentation algo-
rithms resembling expert knowledge autonomously without
human interaction or control being necessary.

3.1. Reference-based Image Segmentation

We solve the segmentation task via a registration problem,
exploiting a consequence of the sectioning: Although the

2Here the computational cheap Sum Of Squared Differences (SSD) is
used, because of intensity equalization in the preprocessing steps.

segmentation of an individual image is tough, neighbouring
images are similar in their respective tissue mapping.
Atlas-based registration and deformation for example has
been suggested for segmentation of brain MR-data [4][5].
Where these approaches are based on a fully segmented vol-
ume as reference, using either optical flow equations [4] or
level-sets [5] to segment a new instance, a full (manual) refer-
ence segmentation of a gigavoxel sized serial section dataset
is clearly impractical.
An optimal rigid alignment of the stack images given, a ref-
erence segmentation is adapted based on the similarity of
the reference image slice to the target image slices using a
registration approach.
For section images R, T : Ω ⊂ R

2 �→ N
+ with a reference

segmentation S : R ⊂ Ω �→ {1, . . . ,M} of R a transfor-
mation of S to segment R correctly is found by an optimal
deformation of R to T . Given the reference intensity image
R and template intensity image T the goal is to find a trans-
formation to maximize the similarity between both images.
The transformation u is now non-parametric or free-form in
contrast to the affine transformation for the stack registration,
allowing arbitrary pixel displacements.
The problem of finding an optimal deformation u maximizing
an image-to-image metric D needs to be regularized, leading
to the well-known deformable registration problem [6][7]

J(u) := D(R, T ; u) + αs(u) != min .

For the regularizer or smoothing term s we elide the physi-
cally motivated elastic potential introduced by [7] in favour
of a gradient-based diffusion regularizer [8][9]. While de-
livering explicitly smooth displacement fields, the diffusion-
registration problem can be solved in O(N) per registration
step using state-of-the-art solution schemes as in [9], on
which we rely.
As a result of the registration procedure we do not employ
the registered (transformed) template image, but the transfor-
mation u in form of a displacement field, which is applied to
transform S to obtain a segmentation of the target image T .
Subsequently, the adapted segmentation is mapped back to
the original label interval by direct binning, since labellings
on interpolation gridpoints outside the label set {1, . . . ,M}
occur.

3.2. Supervised Classification Segmentation

Image segmentation based on a pixel-wise classification in a
supervised classification scheme has been proposed for high-
accuracy results on various image data, including histological
sections of biological specimen [10]. We used two supervised
classification schemes based on local features for benchmark-
ing the reference-based segmentation approach.

3.2.1. Local Features

In order to compile a discriminant feature vector for the clas-
sification, we extracted a set of standard-features for each
pixel in the grayscale images. For the textured nature of sec-
tion images, features are based on spatial variations in the
gray-value distributions of local pixel neighborhoods. Tex-
ture is known as a powerful feature for image classification
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Method\ Class 1 2 3 4 5 6 Total rel. Comp.
(class density) (42.18)% (40.64%) (1.21%) (4.37%) (1.22%) (10.42%) ACC Time

Deformation 0.9931 0.9925 0.8281 0.9643 0.7269 0.9118 0.9782
1.0Based ± 0.0078 ± 0.0049 ± 0.03137 ± 0.0178 ± 0.02426 ± 0.0959 ± 0.0303

one-vs-rest 0.8927 0.8913 0.1643 0.8531 0.4204 0.8366 0.8703
15.6RBF SVM ± 0.0035 ± 0.0018 ± 0.3433 ±0.1325 ±0.1899 ±0.0253 ±0.1161

30-15-logsig 0.8854 0.8091 0.1701 0.7957 0.1539 0.7763 0.8218
12.1MLP ± 0.0086 ±0.0271 ±0.3087 ±0.3119 ± 0.2899 ± 0.2624 ± 0.2014

Table 1. Assessment of the segmentation algorithms on the reference dataset: Examination of the segmentation accuracy
for each tissue class, displaying the per-pixel true positive rates w.r.t. to the reference segmentation (see Section 4.1). The
deformation-based method clearly outperforms both supervised classifiers. SVM and MLP are especially less sensitive for
classes with a lower overall density (class distribution given in percent). The overall accuracy accordingly aggregates best for
the deformable segmentation. The last column indicates the higher computational demands of the supervised approaches in
terms of a normalized computation time (average per image, including feature extraction, training, and classification).

and segmentation in the literature, and we therefore adapted
several approaches for multitexture feature extraction:

• A set of Gabor-filters with different scales and angles

• Gray-Level Coocurrence Matrices for different spatial
relations and derived statistics

• Discrete Wavelet Packet Frame decomposition

• Range, Entropy, StdDev, within different local neigh-
borhoods

Optimal parameters were estimated via spectral analysis,
guaranteeing high discriminative power for the feature set,
non-informative features where identified via Linear Dis-
criminant Analysis and rejected.

3.2.2. SVM and Neural Network Segmentation

Generally the connectionist paradigm of Artifical Neural Net-
works (ANN)[11] as well as the large-margin Support-Vector-
Machines (SVM)[12] have proven to deliver powerful classi-
fication tools in various applications including image classi-
fication and segmentation. We use Feed-Forward Networks
(MLP) and a one-vs-rest SVM for the classification of pixel-
feature data. The reader may be referred to the literature for
details.

4. RESULTS

4.1. Assessment of the Segmentation Accuracy in a Su-
pervised Test Scenario

The correct functioning of reprocessing and stack reconstruc-
tion was proven on the full section data of five individual bar-
ley grains (see figure 1). To demonstrate the accuracy and
robustness of the deformation-based segmentation algorithm
in particular we followed a two step procedure: In a prelimi-
nary experiment we used a sub-stack of 80 images manually
labeled by a biologist as a reference to benchmark the accu-
racy of the deformation-based segmentation against the pixel-
based segmentation with MLP and SVM on the extracted fea-
tures.
10% equidistant stack images were used as reference seg-
mentation for the deformation segmentation algorithm. SVM

and feed-forward net were trained with 10 train-test cycles on
equally distributed samples picked at random, employing a
30 − 15 logsig hidden-layer net architecture, and one-vs-rest
RBF kernel SVMs.
Table 1 shows that the classwise segmentation accuracy of the
deformation-based segmentation is significantly better than
the supervised classification, with the overall accuracy greater
than 97%.

4.2. Application of the Algorithm in Large-scale Model
Generation

We used the deformation-based segmentation creating three-
dimensional histological models of individual barley grains.
Working towards a statistically valid atlas of barley grain
development, serial section images of five individual barley
grains were acquired. Due to individual variances in grain
growth, each grain was sectioned to 2, 128 to 2, 736 slice
images, each of size 1200 × 1600 pixels, adding up to a total
data volume of 30 GB.
After preprocessing and stack registration, the dataset was
partitioned into sub-stacks. In each substack less than 5%
of equidistant spaced slice images were manually segmented
by a biologist to further enforce a minimal overhead for
expert data using the proposed method. These served as
references in the processing of the full dataset, yielding a
three-dimensional histological atlas of five developing barley
grains.
For visual inspection of differentially labeled areas, we em-
ployed an extension of the standard marching cubes algorithm
implemented in the AMIRA software suite for its capability
of extracting surfaces from multiple iso-volumes. Figure 3
shows a surface rendering of one of five grain models which
were constructed.
As expected from the preliminary tests, the fitness-of-use of
the segmentation algorithm was confirmed on large datasets.
Biologically correct segmentations of whole barley grains
could thereby be generated, also proving the preprocessing
and reconstruction steps (see Figure 1).
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5. DISCUSSION

We presented a work-flow of interleaved steps for the con-
struction of 3-D histological atlases based on high-resolution
serial sections, utilizing a novel method for the segmentation
of serial section data. Addressing the segmentation task via an
image-to-image registration problem turned out to be suitable
for the expert-based labelling of complex histological section
images, and clearly outperformed state-of-the-art supervised
segmentation techniques resembling expert knowledge. Both
the test case as well as the large scale application proved the
high accuracy and usability of the deformation-based segmen-
tation algorithm. The drastically reduced computational over-
head of this method in comparison to feature-based segmen-
tation (Table 1) is a prerequisite for the generation of high-
resolution histological models. High-throughput modeling is
particularly essential to quantify and incorperate individual
variances from multitudes of specimen and thereby construct-
ing statistically valid averaging-atlases. Since the underlying
paradigm of deformable image registration is not limited to
section images, a generalization application towards other im-
age modalities and sources is feasible.
In a biological context, volumetrics of the individual volume
datasets delivered new insights into the variances of the com-
position of different tissues within barley grains. Further, 3-
D models serve as spatial framework for the integration of
other data sources, a reference map for tissue specific micro-
dissection assays, and as a visualization aid for analysis. A
robust and fast model-generation pipeline is the basis for an
individual-averaging atlas which will be resolved on a time-
line (4D models), promoting the systematic analysis of devel-
oping barley grains.
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