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ABSTRACT

A growing number of screening applications require the auto-

mated monitoring of cell populations including cell segmen-

tation, tracking, and measurement. We present general meth-

ods for cell segmentation and tracking that exploit the spatio-

temporal nature of the task to constrain segmentation. The

images are de-noised and segmented by combining wavelet

coefficients at various levels, thus enabling extraction of cells

in images with low contrast-to-noise ratios. Each track of

clustered cells resulting from association of nearby cells in

the spatio-temporal volume is then split into individual cells

by evolving sets of contours from other slices. The hypothe-

sis whether to split or merge objects making up the cluster is

tested using learned features trained from single track cells.

Due to the difficult nature of generating ground truth, we also

present a framework for edit-based validation whereby the

user corrects the edits made by the automatic system rather

than generating the truth from scratch. The results show the

promise of the approach and demonstrate the ability of the

algorithms to provide meaningful measurements of cell re-

sponse to drug treatment in low-dose Hoechst-stained cells.

Index Terms— Spatio-temporal analysis, cell segmenta-

tion, cell tracking, edit-based validation.

1. INTRODUCTION

High-throughput automated screening of in-vitro systems is

of great importance to biological research. Two core com-

ponents of the algorithms required for this task are the seg-

mentation and visual tracking of cells. Cell motility and di-

vision are important aspects of fluorescence microscopy ap-

plications in areas such as cancer research, immunology, and

developmental biology. While such applications have spe-

cific requirements, they share several core challenges. Large-

scale experimentation makes it difficult to optimize the imag-

ing conditions for individual experiments. In addition, for

time-lapse datasets, the contrast-to-noise ratio is often low as

a result of the low concentrations of fluorescent dyes that can

be used since all fluorescent DNA binding dyes inhibit DNA

replication to a greater or lesser extent with inevitable toxic-

ity. Model systems also typically contain a large number of

cells thus requiring the monitoring of far more targets than

common surveillance applications. Specific biological events

such as mitosis also need to be handled.

Existing algorithms for cell tracking can be roughly di-

vided into two main approaches: independent detection with

subsequent data association [1, 2] and model based tracking

[3, 4]. Li et al. [5] combines these tasks by both segmenting

each frame separately and using a multi-target tracking sys-

tem using model propagation with level sets and a stochastic

motion filter. Padfield et al. [6] approach the tracking task as

a spatio-temporal segmentation task.

By segmenting the spatio-temporal volume directly, we

solve the segmentation and tracking problems simultaneously.

We utilize a sparse representation of the data using wavelets.

The data is de-noised in the wavelet coefficient space, and the

segmentation is found by extracting connected regions from a

combined subset of wavelet levels. As opposed to segmenting

the data in a single pass, we present an iterative approach for

extracting the individual cell tracks. Since cells often touch,

multiple cells can generate one single 3D spatio-temporal sur-

face, and we apply model-based constraints to extract the in-

dividual cell tracks. The advantages of our approach are that

it automatically trains the cell-like distribution based on mea-

sures from the single-tracks of each dataset, it uses the train-

ing data to test both whether objects are cells and whether

cells at different time points match, and it separates objects

that are merged using the temporal segmentation information

from other slices. To address the problem of high-throughput

validation in the absence of ground truth, we also present a

framework for edit-based validation. Our overall approach is

outlined in Figure 1.

2. SPATIO-TEMPORAL CELL
SEGMENTATION AND TRACKING

2.1. Cell Segmentation

To denoise the images and segment the cells, we use an algo-

rithm based on the shift-invariant wavelet frames transforma-

tion of the image as well as the filtering of non-salient wavelet

coefficients. Prior research on biomedical data [7, 8] demon-

strates that the à trous (with holes) wavelet transform is robust
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Fig. 1. Cell segmentation and tracking flowchart. The de-

tails are described in Section 2.

to local noise variations and discards low frequency objects in

the background. The decomposition is represented as

Ii(x, y) =
∑
m,n

h(m, n)Ii−1(x− 2i−1m, y − 2i−1n) (1)

Wi(x, y) = Ii(x, y)− Ii+1(x, y) (2)

where Ii and Wi represent the approximation and detail im-

ages, respectively, at each scale, i, and h(m, n) denotes the

scaling function.

Assuming that the image noise is additive, the correspond-

ing wavelet transformation results in coefficients generated by

the underlying signal W I and those that correspond to image

noise WN . To approximate the signal term, we threshold the

image stack with an Amplitude-scale-invariant Bayes Estima-

tor (ABE) using Jeffreys’ non-informative prior

W I
i (x, y) ≈ δABE (Wi(x, y)) =

(
Wi(x, y)2 − 3σ2

i

)
+

Wi(x, y)
(3)

where σ2
i is the estimated noise variance at a given scale. In

order to further reduce noise and enhance objects that ex-

tend across multiple resolutions, we compute a correlation

stack Cs(x, y), which is the multiplication of a subset of the

denoised wavelet coefficients corresponding to the selected

scales

Cs(x, y) =
js∏

i=jl

W I
i (x, y)+ . (4)

The segmentation is then obtained as the extraction of

connected regions in the correlation stack. Figure 2 shows

an example segmentation of a low-dose Hoechst-stained sec-

tion demonstrating the accuracy of the segmentation approach

even with a very low contrast-to-noise ratio. The segmented

spatio-temporal volume is then labeled in 3D. This results in

a 3D set of segmented “tubes” corresponding to cells moving

through time.

Fig. 2. Datasets with low contrast-to-noise. The figure on

the left shows a cropped view of a typical low-dose Hoechst-

stained image, and the figure on the right shows the segmen-

tation using the wavelet approach. Contrast-to-noise (CNR)

is defined as μS−μN

σN
, where μS is the signal mean, μN is the

noise mean, and σN is the noise standard deviation. For these

images, CNR = 0.5, indicating that the average intensity

difference between the signal and the noise is only half of the

standard deviation of the noise. The intensity range is only 20

gray-scale levels.

2.2. Spatio-Temporal Cluster Segmentation

The 3D labeled “tubes” comprise two types of tracks: those

corresponding to single cells (single-tracks) and those corre-

sponding to multiple cells clustered together (multi-tracks).

The goal of the spatio-temporal cluster segmentation step is

to segment the multi-tracks into individual tracks by utilizing

learned object descriptors. The distribution p of learned fea-

tures that capture the appearance of cells f t
i (where i is the cell

number and t is the time slice) can be readily trained from the

single-tracks. Alternatively, if few single-tracks are present in

the dataset, these features can be trained using other datasets,

assuming that the experimental conditions are kept constant.

Once the multi-tracks have been identified, the cell clus-

ters are segmented by taking advantage of temporal context

for determining the best way to split cells. The temporal infor-

mation is utilized by propagating higher likelihood cell seg-

mentations to slices with lower likelihood. We incorporate a

statistical test to determine which segmented objects should

be propagated across slices, and we use a curve evolution al-

gorithm that finds the best segmentation such that it retains

the relative area of the cell regions across slices.

For a given multi-track, the algorithm propagates the seg-

mented objects from slices with greater number of objects to

those with fewer. At the completion of the curve evolution,

the number of objects on the adjacent frame will be the same

as the reference frame, and at least one object will have been

segmented. The features f t
i of each of the split segments are

then used to calculate the likelihood of the segment being cell-

like using the trained distribution parameters μ and Σ

G(f t
i ) ∝ exp

[
−1

2
(f t

i − μ)T Σ−1(f t
i − μ)

]
(5)

Given the curve evolution, the likelihoods, and the fact

that the reference frame has more objects than the adjacent
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frame, we can determine whether to merge the labels on the

reference frame or split the labels on the adjacent frame by

comparing the likelihood of the full object to the average of

its parts

Lmerge = G(f t
i∈I)−

1
| I |

∑
i∈I

G(f t
i ) (6)

Lsplit =
1
| I |

∑
i∈I

G(f t+o
i )−G(f t+o

i∈I ) (7)

where o is an offset from the reference frame, and I is the

set of labels under consideration for merging/splitting. If

Lmerge > Lsplit, the labels are merged on the reference

frame; otherwise they are split on the adjacent frame. Lmerge

is high when the combined labels on the reference frame have

a higher likelihood than the separate labels, and Lsplit is high

when the separate labels on the adjacent frame have higher

likelihood than when they are combined.

In this process, mitosis is a special case since a cell will

be one object in one frame and two in the next. This case is

handled implicitly by leaving the regions unchanged if both

splitting the cell on the previous frame and merging the cells

on the next frame lead to lower likelihoods. Here, the causal

relationships are also taken into account since cells can split

over time but not merge.

The step of renumbering the cells in the clusters to cor-

rectly associate cells across frames is accomplished using the

parameters μd, Σd of a distribution trained from the single-

tracks.The features f t+1
j with j = 1 : L of all cells on the

next slice are compared to the features of each of the cells on

the current slice f t
i with i = 1 : L using μd and Σd

G(dt
i,j) ∝ exp

[
−1

2
(dt

i,j − μd)T Σ−1
d (dt

i,j − μd)
]

(8)

(9)

where dt
i,j =| f t

i − f t+1
j | is the absolute difference between

the feature vectors. Using the assignment from the Hungar-

ian algorithm that provides the optimal assignment from cells

across frames, the cell labels are matched across the slices.

3. EDIT-BASED VALIDATION

Validation of high-throughput time-lapse cell segmentation

and tracking algorithms is a challenging task since most cell

assays have many cells and rapid acquisition times (leading to

many time points) making manual validation time-consuming

and tedious. We propose an edit-based validation framework

that consists of the following elements: accepts a general

input independent of the segmentation/tracking algorithm,

draws the attention of the user to regions with probable er-

rors, provides tools for correcting errors, and generates a

Fig. 3. Edit-based validation tool. The upper left image is

the current image being edited, the lower left is the previous

frame, and the upper right is the next frame. The lower right

image is the track matrix that indicates the consistency of the

tracks.The columns of the matrix correspond to different time

points.

score for the algorithm based on the edits. Figure 3 shows a

screenshot of the prototype system.

The system draws the attention of the user to probable

errors in the automatic analysis in a multi-stage approach. In

the first stage, it seeks to ensure continuity of cell tracks using

a construct we call the “track matrix” (see lower right image

in Figure 3). We characterize the consistency of the tracks as

the average length of the run-length encoding of each row.As

corrections are made to increase the consistency of the tracks,

this score improves. In the second stage, the cell-likelihoods

of each cell track are considered. The track having the low-

est average cell-likelihood is calculated, and the lowest like-

lihood cell within this track is displayed. This targets tracks

that consist of either clusters of cells or cells that were broken

into smaller segments.

At each stage of the editing process, the system provides

editing tools for the user to correct errors. These tools enable

adding, removing, moving, and combining cells. The system

also tracks all changes, which enables the tracking and undo-

ing of changes as well as the ability to generate reports.

4. RESULTS

The cell tracking tool was applied to study the effect of the

cell-cycle inhibitor compound Roscovitine. The biological

expectation is that this inhibitor compound will arrest cells at-

tempting to undergo mitosis. The algorithms were applied to

four datasets, two with no treatment (control), and two treated

with Roscovitine. Nuclei were stained with a relatively low

concentration of the nuclear DNA stain HoechstTM33342 to
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Fig. 4. Spatio-temporal trees. The figures show groups of

touching cells, some of which undergo mitosis.

Fig. 5. Example segmentation results. An example cropped

image slice is shown on the left, and the corresponding seg-

mentation is shown on the right.

aid identification. Plates were imaged on a GE IN Cell Ana-

lyzer 1000 (10x objective) with environmental control (370C,

5% CO2). The images were taken every 15 minutes for 112

time points for a total duration of 28 hours.

Figure 4 shows several examples of spatio-temporal trees

extracted by the algorithms. Although the cells move in clus-

ters, touch one another, and undergo mitosis, the algorithms

are able to successfully separate the clusters into individual

tracks. These figures show that the algorithm can extract not

only the tracks, but also the shape of the cells over time. Fig-

ure 5 shows an example segmentation result. Table 1 gives a

numerical comparison of the number of mitotic events at the

start and end of the four wells. We also calculated the distance

from manually placed centroids to the centroids of the auto-

matically segmented cells for every cell of one of the exper-

iments. The mean distance was 5.5μm, and the standard de-

viation was 6.8μm; the average cell diameter in these exper-

iments was approximately 35μm. The total number of man-

ually identified cells was 6157, and 5758 were detected auto-

matically, so that only 6% of the cells were under-segmented.

5. CONCLUSIONS AND FUTURE WORK

Automated analysis of high-throughput time-lapse data can

provide statistically meaningful measures that are difficult to

achieve by manual analysis. We have presented an automatic

analysis approach that exploits the spatio-temporal nature of

the data to constrain the segmentation and tracking problems.

Our edit-based validation framework enables validation of

large datasets with less effort than needed for manual ground

truth generation.

Table 1. Mitotic cell count. The cell cycle inhibitor Roscov-

itine arrests cells as they attempt to undergo mitosis. There-

fore, more cells will remain in the mitotic state at the end of

the experiment. The number of cells in mitosis at the start and

end of the 28-hour sequence for four wells is shown. While

the number of mitotic cells is nearly the same for all wells

at the start, more mitotic cells are present at the end for the

Roscovitine inhibited wells.

Control1 Control2 Inhibited1 Inhibited2

Mitotic start 0 0 0 1

Mitotic end 3 0 8 9

The topics for future work include measuring biologically

relevant phenomena on more datasets and expanding the edit-

based validation framework to incorporate a learning module

that will make suggestions of changes based on past edits.
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