
A SPLINE-BASED FORWARD MODEL FOR OPTICAL DIFFUSE TOMOGRAPHY

Jean-Charles Baritaux, S. Chandra Sekhar, Michael Unser

Biomedical Imaging Group, EPFL, CH-1015 Lausanne, Switzerland

ABSTRACT

Reconstruction algorithms for Optical Diffuse Tomography

(ODT) rely heavily on fast and accurate forward models.

Arbitrary geometries and boundary conditions need to be

handled rigorously since they are the only input to the inverse

problem. From this perspective, Finite Element Methods

(FEM) are good candidates to implement a forward model.

However, these methods require to mesh the domain of in-

terest, which is impractical on a routine basis. The other

downside of the FEM is that the basis functions are often

not compatible with the ones used for solving the inverse

problem, which typically have less degrees of freedom. In

this work, we tackle the 2D problem, and propose a forward

model that uses a mesh-free discretization based on linear

B-Splines. It combines the advantages of the FEM, while

offering a fast and much simpler way of handling complex

geometries. Another motivation for this work is that the

underlying B-spline model is equally suitable for the subse-

quent reconstruction part of the process (solving the inverse

problem). In particular, it is compatible with wavelets and

multiresolution-type signal representations.

Index Terms— Diffuse Optical Tomography, Forward

model, Mesh-free Finite Element Method, B-Spline

1. INTRODUCTION

In ODT, one is interested in recovering optical properties of a

diffusive medium, as well as positions and intensities of some

internal light sources, from peripheral light measurements [1].

Typically, the medium is a biological tissue where the propa-

gation of light is strongly affected by absorption and scatter-

ing events. In the wavelength window of interest (around the

near infra-red), scattering dominates over absorption : instead

of traveling in straight line, photons undergo random changes

of direction, due to interactions with the medium [1, 2].

For high scatterer densities (> 1%), and on large enough

paths, photon transport is aptly approximated by a diffusion

process [3]. The following diffusion equation relates the flu-

ence rate ϕ to the diffusion and absorption coefficients ( re-
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spectively D and μa), and to a source term q in a domain Ω :

−∇.(D∇ϕ(r)) + μaϕ(r) = q(r) , ∀ r ∈ Ω (1)

Note that D and μa can also be space-varying. The following

Robin (or Poisson) boundary conditions are associated :

ϕ(r) + 2 D
∂ϕ

∂n
(r) = 0 , ∀ r ∈ ∂Ω (2)

The forward model consists in solving (1) and (2). It is a

crucial step in building the system matrix which is then used

for solving the inverse problem.

The forward model in ODT is usually solved by analyt-

ical Green’s functions techniques (assuming some idealized

geometry), or by using standard FEM packages that can han-

dle arbitrary geometries as well as space-varying coefficients.

This type of formulation constitutes the state-of-the-art in the

field of ODT, and has led to the reconstruction of reasonably

accurate concentration maps of fluorophores [2, 4].

In this paper, we propose a Spline-based alternative that

we believe to be better suited for the ODT inverse problem.

We focus the 2D case, but our approach is extendable to 3D

as well.

Our method is similar in spirit to the FEM, and it has the

following advantages :

• In contrast with the FEM, it does not require any pre-

liminary meshing of the domain of interest. It uses ba-

sis functions on a regular cartesian grid.

• Our method implicitly accounts for the boundary con-

ditions (2), by including them in the system matrix (us-

ing the weak formulation of the diffusion equation). By

contrast, in the FEM, boundary conditions are usually

imposed through the choice of tailor-made boundary

basis functions.

• Our method can handle arbitrary (polygonal) geome-

tries, as opposed to analytical methods which are appli-

cable only to a few selected geometries for which ex-

plicit Green’s functions expressions are available (slab

and cylinder for instance).

• The approach can handle space-varying diffusion and

absorption properties of the medium.
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• The reconstruction space admits a multi-resolution de-

composition, and can also be spanned by wavelets.

This is a key advantage for solving the inverse problem

in a subsequent step : it is conceptually better to use the

same basis functions for the forward and the inverse

problem.

2. DESCRIPTION OF THE FORWARD MODEL

2.1. Weak formulation of the diffusion equation

By multiplying (1) with a test function ψ and integrating over

the domain, we get the following equality :

∫
Ω

(−∇.(D∇ϕ) + μa ϕ) ψ dr =
∫

Ω

q ψ dr (3)

Using integration by parts (Green’s theorem), and incorporat-

ing the boundary conditions, we derive another integral rela-

tion :

∫
Ω

(D∇ϕ.∇ψ + μa ϕ ψ) dr +
1
2

∫
∂Ω

ϕ ψ dσ

=
∫

Ω

q ψ dr (4)

The set of equalities (4) written for every test function ψ is

called the weak formulation of (1) with boundary conditions

given by (2). In the following, the left hand side of (4) is

denoted a(ϕ, ψ), and the right hand side L(ψ). With these

notations, equation (4) reads : a (ϕ, ψ) = L(ψ). In this ex-

pression, a(., .) is bilinear symmetric and L is linear.

Let us call V the set of test functions; provided V is a

large enough set, there exists a unique ϕ ∈ V such that

∀ψ ∈ V, a(ϕ, ψ) = L(ψ) (5)

Solving (5) is equivalent to solving (1) and (2), with the ad-

vantage that it is simpler to compute numerical solutions of

(5) (see [5]).

The left hand side of equation (4) is composed of two

terms : a domain integral and a boundary integral. Our

method relies on two fundamental observations :

• the boundary integral in (4) accounts for the boundary

conditions. Hence, when (4) is satisfied for every test

function, both (1) and (2) are automatically satisfied.

This is interesting because we solve the two equations

by manipulating a single expression.

• thanks to the present formulation we do not need to tai-

lor the test functions to the boundary. The choice of the

tests functions is flexible, and there is no constraint on

their value on the boundary. In other words, the basis
functions do not depend on the geometry of Ω.

2.2. B-Spline discretization

Our goal is to discretize equation (4) by projecting it onto a

B-spline basis in order to compute an approximate solution

of the diffusion equation. We consider the following basis

functions

ψh
k(x) = β1

(x
h
− k

)
, k ∈ Z

2

where β1(x, y) = tri(x) tri(y), tri(t) being the hat function.

These functions are bivariate B-splines of degree 1 defined on

a regular cartesian grid of pitch h.

We look for an approximate solution of (4) in the space

spanned by the B-splines. Let us expand ϕ on the spline ba-

sis :

ϕ (x) =
∑
k∈Z2

c [k] β1
(x

h
− k

)

This yields

a(ϕ, ψ) =
∑
k∈Z2

c [k] a
(
β1

(x
h
− k

)
, ψ

)

For n ∈ Z
2, we denote Sn the grid cell (a square) whose

lower left corner has coordinates hn. We assume that the

optical coefficients have been discretized on the grid : D[n]
(resp. μa[n]) is the value of D (resp. μa) in Sn. By de-

composing the integrals over the cells of the grid, we can go

further in the discretization of a(., .) :

a (ϕ, ψ) =∑
k∈Z2 c[k]

∑
n∈Z2

{
D[n]

∫
Sn∩Ω

∇β1
(
x
h − k

) ∇ψ dx

+μa[n]
∫

Sn∩Ω
β1

(
x
h − k

)
ψ dx

+ 1
2

∫
Sn∩∂Ω

β1
(
x
h − k

)
ψ dσ

}

Notice that in this expression, the support of every basis func-

tion spans only four grid cells.

The source term is also discretized using the spline basis :

q(x) =
∑
k∈Z2

q [k] β1
(x

h
− k

)

This operation amounts to interpolating q using β1 splines.

With this expression of q, L(ψ) becomes :

L(ψ) =
∑
k∈Z2

q [k]
∫

Ω

β1
(x

h
− k

)
ψ(x) dx

Now, we use the B-splines as our test functions, which yields

the following set of equations :

∑
k∈Z2

c [k] a
(
β1

(x
h
− k

)
, β1

(x
h
− l

))

= L
(
β1

(x
h
− l

))
, ∀ l ∈ Z

2
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Fig. 1. Example of a cartesian grid with a discretized domain

Ω (light grey) and its discretized boundary (thick black seg-

ments). In blue and red, the support of two basis functions. In

dark grey, the intersection of their supports with Ω (used for

the integral computation). The black dots label the bivariate

β1 splines appearing in the system matrix.

Given the expressions for a(., .) and L, the only non-zero

terms in the above equality are those involving functions

whose support intersects Ω. Since Ω is bounded, there is

only a finite number of such functions (we use I to denote

their indices). Fig 1 illustrates the discretization process.

On this figure the black dots label elements of hI . We also

represented the support of one basis function.

In the end, we are left with a linear system of equations :

Ac = b, (6)

where we noted

Ak,l = a
(
β1

(x
h
− k

)
, β1

(x
h
− l

))
, (k, l) ∈ I × I,

and c is the vector of coefficients c [k] , k ∈ I . The vector b
comes from the discretization of L :

b = Lq, where q = (q [k])k∈I , and

Lk,l =
∫

Ω

β1
(x

h
− k

)
β1

(x
h
− l

)
dx, (k, l) ∈ I × I.

A is the system matrix of our forward model. It is called

the rigidity matrix, and it is symmetric, positive definite. In

order to compute an approximate solution of (5) we solve the

linear system (6). Now, recall our remarks of Section 2.1.

First, although our basis functions are defined on a cartesian

grid, they are still adapted to solve the diffusion equation for

an arbitrary geometry. Second, the boundary conditions are

implicitly included in the system matrix. The accuracy of our

approximation is controlled by h, the pitch of the grid.

At this point, we need a method to generate the rigidity

matrix, and the vector b. From the discretized expressions

of a(., .) and L, we notice that the quantities of interest to

generate A and b are the integrals over the cells of the grid.

2.3. The algorithm

1) Domain and boundary discretization

To compute the domain and contour integrals involved in the

expressions of a(., .) and L, it is necessary to have a represen-

tation of the boundary of Ω. This is essential for specifying

the limits of the domain of integration, and also to perform

the contour integral.

To that end, we consider the cartesian mesh in which the

basis functions are defined, and we use an approximation of

the domain boundary that is composed of line segments. We

only allow line segments that link a grid node to one of its 8

neighbors. In other words, we use edges and diagonals of the

grid squares to approximate the boundary. The quality of the

approximation obviously dependent on the step size h.

Additionally, at this stage we determine the set I of grid

nodes involved in the computation of A (those for which the

basis function intersects Ω).

2) Evalutation of the domain integrals :∫
Sn∩Ω

∇β1
(
x
h − k

) ∇β1
(
x
h − l

)
dx and∫

Sn∩Ω
β1

(
x
h − k

)
β1

(
x
h − l

)
dx

To automate the computations we exploit the properties of

the grid, and the polygonal boundary geometry. Thanks to

the previous step, there are only two ways for the boundary

to cross a grid cell (the diagonals). Taking into account the

relative positions of the basis functions, we come up with 144

cases in total for the value of the integral over a cell. This

number can be reduced by symmetry considerations. The ge-

ometrical situation is illustrated Fig 1. Using formulas such

as (β1 ∗ β1)(k) = β3(k), we have closed-form expressions

in all possible cases. Since there is a finite number of cases,

we can build a table associating a geometrical configuration

to the value of the domain integral.

3) Evalutation of the contour integrals :∫
Sn∩∂Ω

β1
(
x
h − k

)
β1

(
x
h − l

)
dx

We proceed as in 2) for evaluating the contour integrals.

There is a finite number of cases, which enables us to build

another table. This, in turn, takes care of the boundary condi-

tions.
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4) Generation of the rigidity matrix

Using our tables of pre-computed integral values, we can

straightforwardly generate the system matrix in an automated

way. The contribution of the optical parameters (D and μa) is

incorporated as shown in the discretized expression of a(., .)
(see Section 2.2). We consider that the coefficients have been

discretized on the grid, and we weigh the integral on a cell by

the value of a parameter on that same cell.

5) Generation of the vector b

The same approach is used to compute b : we generate the

matrix L from the pre-computed tables, and we deduce b
from the coefficients (q[k])k∈Z2 .

3. RESULTS

We have implemented a forward model based on the strat-

egy described in Section 2.3. We tested the method on vari-

ous configurations of the geometry, source number and posi-

tions. The results were successfully validated against results

obtained from a Fourier domain analysis on the one hand,

and from a more standard finite differences discretization on

the other hand. With the Fourier approach we could test the

model in the case of an infinite medium with zero boundary

conditions at infinity, while finite differences enabled to test

on a bounded domain with boundary conditions (2).

In Fig 2, we present the B-spline solution of the forward

model for an oval geometry, with two light sources. This re-

sult was computed for a sample size of 20mm, using con-

stant diffusion and absorption coefficients (D = 2.73 cm−1

, μa = 1cm−1), and a 64 × 64 grid. Computation time is

around 1min in that example, which is encouraging consid-

ering that the algorithm has not yet been optimized to solve

large sparse linear systems (A is a 4096 × 4096 matrix, and

we used the standard routine of Matlab on a Mac worksta-

tion equipped with a 2.66GHz dual core processor and 1GB

of memory).

4. DISCUSSION

The modeling part is crucial in the ODT problem. Hence, an

appropriate forward model needs to be built before one can

even start to address the inverse problem. It is important to

have a versatile enough model that is able to incorporate in-

formation provided by other imaging modalities. In practice,

ODT can be coupled to a Computed Tomography (CT) imag-

ing device, which acquires the geometry of the sample, and

some information about its internal structure.

Although our approach is probably not as sophisticated as

advanced mesh-based FEM in terms of adaptation to the ge-

ometry, we believe that it provides a good tradeoff between

computation time, numerical accuracy and simplicity. There-

fore, it is a good candidate for the forward model used in solv-

ing an inverse problem. Using the weak formulation, we have
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Fig. 2. Forward model solved for 2 point sources placed in an

oval domain.

a very general model (D and μa can vary spatially, the ge-

ometry is arbitrary, boundary conditions are included), but

we are not limited by meshing problems because we work

with a cartesian grid. On top of providing acceptable accu-

racy (O(h2)), the choice of β1 splines as the basis functions

keeps the computations simple, and yields sparse and struc-

tured rigidity matrices because they have a small support and

a single degree of freedom. Finally, considering that the for-

ward model will be used in a reconstruction algorithm, splines

are interesting because they naturally span multi-resolution

spaces. This is a significant advantage if one is interested in

applying wavelet techniques, or multigrid approaches for re-

construction.
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