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ABSTRACT
Tagged MRI is a non-invasive technique to assess my-

ocardial deformations. In this paper, we developed a novel

non-tracking-based strain estimation method for tagged MRI.

This method is based on the extraction of tag’s deformation

gradient, and therefore avoids the limitations of conventional

tracking-based strain estimators. We tested this method on

both simulated and real world images. In simulated images,

we quantitatively evaluated the accuracy and robustness of

our non-tracking estimator. We find that the results of cir-

cumferential strain and local tissue rotation angle are highly

consistent with the ground truth values. We also tested our

method on both normal and patient data. Real world tests

show our results are valuable to visually distinguishing nor-

mal and abnormal data, and have the potential to quantita-

tively diagnose cardiac malfunctions or diseases.

Index Terms— Tagged MRI, Strain analysis

1. INTRODUCTION
Cardiovascular diseases are the main cause of death in de-

veloped countries. Many cardiovascular diseases, such as is-

chemia and infarction, are associated with the alteration of

the global or local contractility of myocardium. Accurately

assessing the detailed myocardial deformation, such as the

estimation of the local strain values, could be critical for the

early diagnosis of cardiac diseases and dysfunctions.

Tagged cardiac magnetic resonance imaging (tMRI) [1]

has been extensively used in clinical applications to non-invasively

visualize the detailed myocardial deformation. The technique

of tMRI generates sets of equally spaced parallel tagging lines

within the myocardium as temporary material markers through

spatial modulation of the magnetization. See Fig. 1 for some

examples. The goal of this study is to quantitatively assess

the myocardial strain values by extracting the deformation of

the tag lines or grids.

(a) (b) (c)

Fig. 1. Sample images of tMRI. (a) and (b) are from the same

heart at the same imaging plane and have tagging lines that

are perpendicular to each other. (c) has tagging grids. Our

strain estimation method will work on both imaging settings.

In continuum kinematics, strain can be formulated as the

derivative of displacement. Therefore, to estimate the my-

ocardial strain from tMRI, many researchers have proposed

tracking-based methods to first derive myocardial displace-

ment. Then strain can be calculated from the displacement

field. In [2], deformed tags are tracked and interpolated using

a spline method to obtain the displacement map. Then the 2D

Lagrangian strain is calculated from the horizontal and verti-

cal displacement maps. In [3], 3D strain is derived from a 3D

displacement map. A main difficulty of tag-tracking based

methods is in balancing the internal and external forces of

the deformable model that is used in the automated tracking

process. If the internal forces are too small, then irregular

tracking results, such as tag jumps, will present. If the in-

ternal forces are too big, then over-smoothed tags will lead

to underestimated strain results. Another popular approach is

using the HARP technique [4]. In [5, 6], myocardial velocity

field and pathlines are calculated from the phase map using

the HARP technique. Then strain is obtained from the HARP

phase tracking results. A limitation of HARP-based methods

is that they have difficulties in handling tags with large defor-

mation. In addition, phase tracking is done by adding up the

phase changes in each previous temporal frames. Therefore

the tracking error is prone to accumulation.

In [7, 8], Gabor-filter-bank-based methods are proposed to

extract tagging lines and myocardial deformation. Comparing

with Fourier-transform-based methods, such as HARP, Gabor

filter is a spatially localized method so that it is more adaptive

to large tag deformation. In this paper, we propose a non-

tracking 2D strain estimation method based on Gabor filter.

At each pixel in the myocardium area, we extract the local tag

distances and orientations in both x− and y− coordinates by

searching for an optimal Gabor filter. Then the 2D strain and

local rotation angle at each pixel can be obtained by using the

strain formula in terms of deformation gradient. In this way,

we don’t need to track the tags or phase angles over time,

and the limitations of tracking methods listed in the previous

paragraph can be avoided. We first test our method on a series

of phantom images and study the effectiveness of our Gabor-

based strain estimation method. Then we apply this method

on normal and patient data. From the experiments, we find

that our strain estimation method is accurate and robust to

noise. It has the potential to quantitatively diagnose cardiac

malfunctions or diseases.
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2. METHODOLOGY

2.1. Gabor Filter Design
2D Gabor filter is basically a 2D Gaussian multiplied by a

complex 2D sinusoid [9]: h(x, y) = g(x, y)s(x, y), where

g(x, y) is a 2D Gaussian, and s(x, y) is a complex 2D sinu-

soid function: s(x, y) = exp[−j2π(Ux + V y)].
In this application, we use a symmetric Gaussian envelope

with σx = σy = 1/
√

U2 + V 2, so that the rotation of the Ga-

bor filter is determined only by the 2D frequencies of the com-

plex sinusoid, which can be derived by φ = arctan(V/U).
The spacing between peaks of the sinusoid is determined by

S = 1/
√

U2 + V 2. A Gabor filter in our application can be

defined with only two parameters U and V :

h(x, y) ==
U2 + V 2

2π
e−[

(x2+y2)(U2+V 2)
2 +j2π(Ux+V y)] (1)

A main advantage of Gabor filters is that they always achieve

the minimum space-bandwidth product which is specified in

the uncertainty principle due to their Gaussian envelopes [9].

At time 0 of the tagged MR imaging process, when the tag-

ging lines or grids are initially straight and equally spaced

with distance D, we set the initial parameters Ui and Vi of the

Gabor filter to be equal to the frequencies of the image’s first

harmonic peaks in the spectral domain [7]. During a heart

beat cycle, the tagging lines or grids deform with the under-

lying myocardium, and the spacing changes m = S/D and

orientation changes Δφ = φ− φi occur accordingly. We op-

timize U and V of the Gabor filter to fit the deformed local

tag patterns, which means by convolving the optimal Gabor

filter ho(Uo, Vo) with the local image patch I that centers at

certain pixel (x, y), we get the highest magnitude response.

Then, we can extract the local deformations m and Δφ.

(Uo, Vo) = argmax
U,V

(|h(U, V ) ∗ I|) (2)

The optimization procedure can be performed using dif-

ferent strategies, such as gradient descent or simplex method.

Since we only need to optimize two parameters U and V , in

our experiment, the optimization converges very fast by using

either method.

2.2. Strain Estimation
Instead of calculating the strain values in terms of the gradi-

ent of the displacement by tracking the tag pattern, we directly

analyze the local tag deformation. For simplicity, we assume

that the myocardium is incompressible, and it undergoes three

possible deformations: stretching, compression, and local ro-

tation. The initial tag spacings and orientations are referred to

as the initial state, so that Lagrangian strains in beating my-

ocardium can be obtained by comparing the deformed tags to

the initial state.

For a myocardial element, we assume that in a certain

coordinate system X its initial length is dX. After defor-

mation, the myocardial element’s length is dx in coordinate

X. At position x we can define the deformation gradient

F = dx/dX = ∇x [10]. For 2D deformation gradient, as

seen in Figure 2, the initial tag pattern has two sets of hor-

izontal and vertical tagging lines with spacings equal to Dx

and Dy . After myocardial deformation, the deformed tagging

line spacings become Sx and Sy . The orientation changes of

the tagging lines are Δφx and Δφy . Then the deformation

gradient tensor F can be derived by:

F =

[
Sx cos Δφy

Dx sin φ
Sy sin Δφx

Dx sin φ
Sx sin Δφy

Dy sin φ
Sy cos Δφx

Dy sin φ

]
(3)

where φ = π
2 −Δφx −Δφy . From the previous section,

the spacing parameter m and orientation changes Δφ of the

Gabor filter can be directly used to derive F.

Fig. 2. The illustration of F calculation. After tag deforma-

tion, dx = Sx cos Δφy/ sin φ, and dy = Sy cos Δφx/ sin φ,

which are used in Equation. 3.

From F, we can derive the Lagrangian finite strain tensor

E and local rotation matrix R by:

E =
1
2
(FT · F− I) (4)

R = F(FT · F)−1/2 (5)

where I is an identity matrix.

2.3. Evaluation on Phantom Images
To evaluate our strain estimation method, we generate 5 frames

of phantom images that simulate the contraction process of

the left ventricular (LV) muscle. A main advantage of us-

ing phantom images is that our strain estimates can be easily

compared with the ground truth. As seen in the first and sec-

ond rows of Fig. 3, we generate a 2D LV phantom with both

horizontal and vertical tagging lines in short axis, by adding

2D sinusoid patterns. Then the LV model undergoes incom-

pressible deformation of contraction and rotation. At time t4,

based on the calculation of the 2D area, the ejection fraction

(EF) of this phantom is 75%, which is higher than human val-

ues in most cases, so that we guarantee this model can fit most

clinical circumstances (In healthy heart, based on calculation

of 3D volume, EF is about 55%−70% [11]. In diseased heart,

this value tends to be smaller.)

In clinical tMRI imaging settings, the initial horizontal

and vertical tag spacings are equal: Dx = Dy = D. Us-

ing Equation 2, the local deformations Sx/D, Sy/D, Δφx

and Δφy can be obtained by optimizing the Gabor filter’s fre-

quency parameters U and V . In the third row of Fig. 3, the

Gabor estimated local deformation maps at time t4 are illus-

trated. For maps of S/D, the grey background equals 1, and

brighter intensity corresponds to bigger tag spacing. For maps

of Δφ, the grey background equals 0, and brighter intensity

stands for positive orientation change. We can find that our
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Gabor filter optimization method achieves very smooth de-

formation maps that are consistent with the tag deformation

patterns. Then the deformation gradient tensor F, the strain

tensor E and the local rotation matrix R can be derived from

Equations 3, 4 and 5.

Other than the 2D horizontal-vertical Lagrangian strain

tensor in Equation 4, in myocardial deformation research, we

are more interested in the radial and circumferential strains.

Positive and negative radial strains indicate myocardial thick-

ening and thinning, respectively, while myocardial stretch-

ing and shortening are represented by positive and negative

circumferential strains, respectively. We define an angle θ
about the centroid of the LV, and transform E into a radial-

circumferential strain tensor Ė with a rotation matrix Q(θ),
so that Ė = QEQT .

t0 t1 t2 t3 t4

t4 Sx/D Sy/D Δφx Δφy

Cirt2 Cirt4 Radt2 Radt4 Rott2 Rott4

Fig. 3. The first and second rows are the simulated phan-

tom images, which undergo a inward contraction with rota-

tion from t0 to t4. The third row is the deformations extracted

from phantom images at t4 using our Gabor filter method.

The fourth and fifth rows are for comparison of ground truth

and our estimation. Circumferential strain, radial strain and

rotation angle at t2 and t4 are compared.

For quantitative evaluation, we calculate the means and

standard deviations of the 2D strain and rotation angle. As

seen in Fig. 4, we find that our method is most accurate in

estimating rotation angle. For circumferential strain, our esti-

mation matches with the ground truth well from t1 to t3, and

tends to underestimate when contraction gets bigger at t4 (EF

= 75%, which is rare in real human data). For radial strain,

our method underestimates for every time frame, but still has

the same trend as the ground truth.

Our non-tracking method calculates the local deformation

at each single pixel. Therefore, in real data implementation, a

major difficulty comes from the noisy nature of tMRI, which

usually leads to irregular deformation maps. To solve this

Fig. 4. Quantitative comparisons of the mean and standard

deviation, at each time frame, of the radial strain (left-hand-

side), the circumferential strain (middle) and the rotation an-

gle (right-hand-side) show our estimations are consistent with

the ground truth.

problem, we add a filtering loop to smooth out the noise. As

illustrated in Fig. 6, in each iteration of the filtering loop, at

each pixel, the local image patch is convolved with the esti-

mated optimal Gabor filter. The convolution result is used to

update the pixel’s intensity, which is used in the next iteration.

As seen in Fig. 5, the LV region LV0 in the input image is

noisy, thus without smoothing, the deformation maps Sx0/D
and Δφx0 are corrupted with error estimations. After 3 it-

erations of filtering the LV with the estimated Gabor filter at

each pixel, the smoothed LV3 gives more regular deformation

maps Sx3/D and Δφx3 .

Input LV0 Sx0/D Δφx0 LV1 Sx1/D Δφx1

LV2 Sx2/D Δφx2 LV3 Sx3/D Δφx3

Fig. 5. A representative of real world tMRI whose LV region

LV0 is noisy, which leads to irregular estimations of Sx0/D
and Δφx0 . After 3 smoothing iterations, we get a smoother

LV3 and better estimations of Sx3/D and Δφx3 .

However, smoothing the input image could be a danger-

ous strategy because it also smoothes the myocardial defor-

mations. Therefore we need to examine how smoothing loops

affect the strain estimation. In the phantom images, at time t4,

we apply filtering loops and observe how strain and rotation

angle change. In Fig. 6, we see the estimations of rotation

angle and circumferential strain do not change much after 4

smoothing loops. But radial strain estimation decreases after

the first loop, and tends to be stable after a few iterations.

3. EXPERIMENTS ON REAL DATA
We tested our novel strain estimation method on both normal

and patient data. For grid tagged MRI, we first separate the

tag grids into 2 sets of tagging lines by a band-stop filter [12].

We estimate the strain and rotation angle only within the LV

contours. To smooth out noise, we apply 3 iterations of the

smoothing filter. In Fig. 7, we show a visual comparison of

our estimates in a normal subject and a patient. For quanti-

tative analysis, we divide the LV into 6 sectors, and calculate

the means of strain and rotation angle in each sector at each

time frame. In Fig. 8 we show the quantitative comparison.
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Fig. 6. Left hand side: The flowchart of the smoothing

method. Right hand side: Quantitative analysis of the rota-

tion angle (first row), the circumferential strain (second row)

and the radial strain estimations (third row) w.r.t. the iteration

number of the smoothing loop.

It is interesting to see that the magnitudes of the strain or ro-

tation angle value are not the only criteria to diagnose abnor-

mality. Their spatial and temporal distributions seem more

important. Normal heart seems to have more smoothly dis-

tributed strain and rotation angle values. On the other hand,

the patient heart seems to contract very hard at the 12 and 7

o’clock positions (indicated by the high strain magnitudes).

However, most of the contraction is turned into a rotating mo-

tion (indicated by the big rotation angles), which makes the

contractive efficiency poor. This suggests that the myocardial

function should be assessed on comprehensive bases, includ-

ing the strain magnitude, the regional strain pattern, and the

regional tissue rotation pattern. Our novel strain estimation

method works well in capturing the regional myocardial strain

and rotation in tMRI.
Normal Patient

t1 t4 t6 t1 t4 t6

Fig. 7. Visual comparison of normal (left-hand-side) and pa-

tient’s (right-hand-side) circumferential strain (first row), ra-

dial strain (second row) and rotation angle (third row) estima-

tions at time t1, t4 and t6. For quantitative analysis, we divide

the LV into 6 sectors, which is illustrated in the lower-left im-

age.

4. CONCLUSION AND FUTURE WORK
In this paper, we developed a novel non-tracking-based strain

estimation method in tagged MRI. This method calculates

strain by extracting the tag’s deformation gradient, and avoids

the limitations of conventional tracking-based strain estima-

tors. We tested this method on both simulated and real world

images. In simulated images, we quantitatively evaluate the

accuracy and robustness of our non-tracking estimator. We

Fig. 8. In each LV sector, at each time frame, we calculate

the mean value of the radial strain (left), the circumferential

strain (middle) and the rotation angle (right) estimations. The

colored surfaces illustrate the temporal and spatial distribu-

tions of the estimated values. The first row is from normal

data. The second row is from patient data.

also tested our method on both normal and patient data. We

find that our estimation results are highly consistent with sim-

ulated ground truth, and are potentially valuable to distin-

guishing the normal and abnormal data. In future work, we

will develop the analysis of the strain and rotation patterns, in

order to extract useful information to help with cardiac mal-

function and disease diagnosis.
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