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ABSTRACT

In order to address the tendency of ultrasound B-Mode im-

ages to show a too small sizing of tumour masses in breast

cancer diagnosis, a novel segmentation method has been in-

troduced. In this paper it has been explored if this problem

can be solved by incorporating strain parameters from ultra-

sound elastography into a segmentation framework. By incor-

porating a local power estimate from an autoregressive model

on the RF-data with strain parameters into a fast algorithm us-

ing Graph-cuts, very difficult to interpret cancer data could be

segmented successfully with more accurate sizing than with

B-Mode data alone. However, more research is necessary to

correlate histology findings with elasticity parameters to find

the best model to interpret strain data for breast mass segmen-

tation.

Index Terms— Biomedical acoustic imaging, Cancer,

Image segmentation, Spectral analysis, Strain

1. INTRODUCTION

Ultrasonic imaging has become an indispensable tool used

in diagnosis of cancer masses. However, despite its central

role in breast cancer diagnosis, even for skilled radiologists

it is still a challenging problem to correctly size and charac-

terize cancer masses. The main challenges of sizing breast

cancer masses in ultrasound is the lack of clear defined bor-

ders due to its invasive nature into healthy tissue, often a

lack of distinctive texture compared to healthy tissue, irregu-

lar shape, anisotropic appearance and high cross-patient vari-

ability in texture and appearance. Naturally, the usual prob-

lems of ultrasound such as low contrast, speckle-, attenuation-

and shadowing artefacts also have to be dealt with. In order

to deal with these problems, we propose in this paper a novel

method to segment breast masses using a combination of a

RF-data derived measure and strain imaging parameters.

With other applications of medical ultrasound, segmen-

tation algorithms have already shown great promise to help

radiologists in the identification of image features. Some ex-

amples of effective segmentation frameworks are the work

Research supported by UK EPSRC Grant GR-S94575 01

by Xie et al[1] and Mulet-Prada[2] for kidney and cardio-

vascular segmentation, respectively. However, due the above

mentioned challenges in the identification of breast cancer

masses, such methods which rely on shape and texture priors

or edge information can work poorly with breast ultrasound

data. Hence, region based segmentation algorithms, usually

based on Bayesian frameworks [3] or local image statistics

[4], have been proposed for the problem of breast cancer seg-

mentation.

However, segmentation based solely on static data is an

extremely difficult problem. Correspondingly, radiologists

rely on the utilization of dynamic information such as the

stiffness and mobility of lesions for characterizing and sizing

breast cancer. This is usually achieved by palpation, and the

quantitative equivalent to this for the medical imaging com-

munity is ultrasound strain estimation (elastography). Ac-

cording to [5] the strain can be estimated with these methods

accurately qualitatively and within a cumulative variance over

time quantitatively.

So far the only attempts at segmentation based on pa-

rameters derived from the acoustic RF-signal are the works

by Boukerroui[3] and Dydenko[6]. Of these works, only

the work by Dydenko[6] is based solely on parameters de-

rived from the RF-signal, using spectral autoregressive and

velocity-based parameters for the segmentation of cardio-

graphic images. The work by Boukerroui[3] is a hybrid

B-mode RF-signal framework which uses the RF-signal to

estimate parameters related to the local power of the signal

(integrated backscatter and mean central frequency).

2. METHOD

2.1. Method - Overview of Graph-Cuts

We propose a region based segmentation framework using

Graph-cuts that minimizes an energy function E(x) of the

following form:

E(x) = θconst +
∑

p∈V
θp(xp) +

∑

(p,q)∈E
θpq(xp, xq) (1)

Here, set V corresponds to the set of pixels in the image; xp

denotes the label of pixel p ∈ V and the set E corresponds to
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the set of connections/edges each pixel p has with its neigh-

bors q. The term θp encodes the cost functions associated

with each label x and the pairwise term θpq is regularizing

term penalizing differences in neighboring pixel intensities.

For finding the global minimum of E(x) in a binary segmen-

tation one can use with Graph-cuts the very efficient and fast

max flow-min cut algorithm[7]. This is a particularly attrac-

tive method for RF analysis due to the large volume of data.

Each edge of a pixel to its neighbors contains the simi-

larity measure θpq, which gives a high cost when assigning

two similar neighboring pixels different labels. In order to

guarantee convergence, θpq has to be a submodular function

satisfying:

θpq(0, 0) + θpq(1, 1) ≤ θpq(1, 0) + θpq(0, 1) (2)

Regarding this condition, the following cost function has been

used in an eight pixel neighborhood:

θpq = we · e−
(Ip−Iq)2

ρ (3)

with Iq and Ip being the pixel intensities; ρ determining the

cut-off value to penalize the difference between Ip and Iq and

we being any positive value.

2.2. Method - RF Parameters

In prior work we used the residue rp of an AR-model, as an

estimate of power which is hardly affected by harmonic leak-

age and rarefaction artefacts[8]. As one can see in Fig. 1(b),

the image from plotting this parameter has no visible speckle

artefacts and its grey-level values can be directly used for seg-

mentation.

For simplicity, a Gaussian mixture model is assumed for

classifying the grey-level intensities of rp into foreground

xfgrnd and background xbgrnd. As presented in Fig. 2(a), a

comparison of the histogram of an area within a cancer mass

and an area of ”normal” tissue shows sufficient distance

between the peaks on the respective histograms to allow a

separation of both labels with a Gaussian mixture model.

Being an estimate of the signal power, the residue-image

rp is naturally strongly effected by shadowing artefacts, caus-

ing the segmentation to bleed into the posterior shadow of

cancer masses. To minimize this effect, a filter is applied to

enhance any horizontal image features which might help to

stop bleeding. Shown by Czerwiniski[9], the sticks filter is

an optimal filter to identity linear features, and consequently

rp is convolved with such a filter fsticks ”tuned” to horizontal

structures. Hence, one can model the cost function for both

t-links as:

θp(xfgrnd) = wf · φμf ,σ2
f
(rp � fsticks)

θp(xbgrnd) = wb · φμb,σ2
b
(rp � fsticks)

(4)

Here, φμb,σ2
b
(p) is the probability density function of a normal

distribution with μf , μb, σf and σb as the mean and standard

(a) (b)

Fig. 1. The residue image (b) derived from the B-mode image

(a). The image intensities of (b) are used to segment the mass

in the center of the lower half of the image.

(a) (b)

Fig. 2. Histograms of (a) the residue image, with the shaded

plot being from a cancer mass; (b) strain in cancer mass

deviation of foreground and background image patches. With

� being the convolution operator, wf , wb being weighting fac-

tors, which are currently set to wf = wb and can be any value

greater than one.

2.3. Method - Strain Data

As it has been mentioned in the introduction, using eq.(4) will

still not properly account for the problems of posterior shad-

owing and the invasive nature of cancer. Unfortunately, there

is little experience in the interpretation of the strain data from

mammary ultrasound. The strain appears to be in Fig. 2(b)

roughly Gaussian distributed, when measured within a well

defined cancer mass. However, there is currently very little

data available on the confidence intervals on where exactly

the border of the cancer mass is, hence what the variance of

the strain within a tumour mass is.

In the employed elasticity reconstruction algorithm, the

strain of the tumour mass is defined by design at around 0%
relative strain. Correspondingly, the foreground strain cost
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function ψf (sp) can be defined as a normal distribution with

μ = 0 and σ2
s estimated from the data. The background of

the strain image consists mainly of two different structures:

normal fatty breast tissue and the pectoral muscle. Normal

tissue will show high relative strain as it is softer than tumour

masses, and muscle tissue will show very low relative strain.

Using this information it the background strain cost function

ψb(sp) is defined as the inverse of the foreground cost func-

tion. This can be achieved for example by taking the log of

ψf (sp), which will yield the final cost functions:

θp(xfgrnd) = wf · φμf ,σ2
f
(rp � fsticks) + wsf · ψf (sp)

θp(xbgrnd) = wb · φμb,σ2
b
(rp � fsticks) + wsb · ψb(sp)

(5)

with
ψf (sp) = φ0.0,σ2

s
(sp)

ψb(sp) = nlog(ψf (sp) + δ) (6)

and sp being the strain at pixel p, δ being a small value and n
being a normalisation factor.

3. IMPLEMENTATION

As the authors were not aware of any phantoms which repro-

duce the invasive nature of cancer into normal tissue, it was

chosen to test the algorithm solely on already recorded patient

data. All data was recorded during a breast cancer study, on

an Analogic AN-2300 with a BK-Medical 8805 probe using

a centre frequency of 4.0 MHz, and recording the RF-data at

a sampling frequency of 40 MHz. The motion data for the

strain reconstruction was recorded from an assissted freehand

set-up. All segmentation code was written in C++ using the

ITK libraries for general image processing and code from V.

Kolmogorov for the max-flow min-cut algorithm.

4. VALIDATION

Currently most cancer cases detected by the above mentioned

study have been treated with an wide area local excision (cut-

ting the tumour out). Consequently, there are from pathology

histology slides of the removed cancer available, which shows

the biological ground truth on tumour growth. As these slides

are always cut along the superior-inferior axis from superfi-

cial to deep, one can measure the ground truth on the max-

imum tumour size along these two planes. To correlate the

histology findings with the ultrasound data, a scanning pro-

cedure was employed where the ultrasound probe is aligned

along the same plane as the histological slides are cut, and

the radiologist scans once in this orientation the maximum

tumour extent along the superior-inferior and once along the

superficial-deep plane. In both scans the radiologist then sizes

the tumour along the appropiate axis to obtain the B-mode siz-

ing data. These same scans will be segmented with the above

algorithm and then compared with the B-mode and histology

sizing.

5. EXPERIMENTAL RESULTS AND DISCUSSION

Due to the large time delay between the screening, opera-

tion and then pathological analysis of the excised tumour,

so far only four pathological reports have become available

from patients scanned with the procedure from section 4.

An overview of the current sizing results can be seen in

figure 3(d), where for each patient the first column repre-

sents the superior-inferior sizing and the second one showing

superficial-deep measurements.

As it has been experienced regularly in clinical practise,

most B-mode measurements under represent the true size of

the tumour mass. With the greatest discrepancy being with

patient 2, showcased in figure 3(a) for the B-mode sizing and

3(b) for the corresponding segmentation result. Another in-

teresting feature of this case is the presence of a very large

ductal carcinoma in situ (DCIS), benign abnormal growth,

outside of the main invasive tumour site. The sizing of the

DCIS is according to histology 25mm, and can be seen as the

large spiculations to the right of the main mass. As the DCIS

has to be removed as well, the oversized segmentation is actu-

ally the clinically relevant sizing of the tumour. Despite this,

the measurements on figure 3(d) for this case are without the

DCIS.

Regarding the other measurements, the general trend is

that B-mode sizing measurements are too small and the seg-

mentation results are always larger than the B-Mode estimate

and are mostly roughly 1mm larger than histology measure-

ments. As having a too small sizing estimate is clinically dan-

gerous, the segmentation results are in all cases the safer and

preferred estimate for the planning of treatment and surgery.

Regarding the segmentation sizing, it has to be noted that one

could get more accurate results if one changed by hand for

each case the mean and variance of ψf (sp) to account for

noise in the strain data. The absolutely accurate results for pa-

tient 2 is due to the high quality of the strain estimate, which

can be seen in figure 3(c). Hence, the need for more research

into dealing with noise in strain data is required. Despite this,

the sizing from the segmentation is alreay more accurate and

clinically more relevant and safer than the sizing a trained ra-

diologist could ever do with B-Mode data alone.

6. CONCLUSION

In this paper it has been explored how incorporating strain pa-

rameters into a Graph-cuts based segmentation algorithm will

improve the sizing of tumour masses in ultrasound. Due to

the high time delay between initial diagnosis and pathologi-

cal analysis of the excised tumour, only a very a small number

of cases are present where the sizing data can be compared

with the ground truth from histology. Even with this small

data set there is already a clear trend of the segmentation al-

ways delivering a clinically safer and in most cases a more

accurate sizing estimate than a trained radiologist could do
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(a) (b)

(c) (d)

Fig. 3. Overall sizing results are shown in (d) with for each patient the first column showing inferior-superior and second one

superficial-deep sizing, (a) B-mode sizing of patient 2, (b) corresponding segmentation result, (c) corresponding strain data

with B-Mode data alone. However, better understanding of

how strain data correlates with histology is required to obtain

more accurate results.
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