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ABSTRACT 

 
Spatial patterns of activation statistics within anatomically-defined 
regions of interest (ROIs) in functional magnetic resonance 
imaging (fMRI) data were recently shown to be sensitive markers 
of brain activation changes. Most current methods that analyze 
fMRI activation statistics largely ignore this. The accuracy and 
validity of the prevalent approach of spatial normalization of 
functional data is also being debated. In this paper we present a 
novel spherical harmonics based rotational, translation and scale 
invariant feature representation of fMRI data which allows for 
direct quantification of activation patterns within ROIs without any 
need for spatial normalization. We also present a novel parallel 
technique for quantifying anatomical properties of the ROIs where 
we employ a principal component based approach to reduce the 
effects of anatomical variability in the ROI on functional pattern 
analysis. We validate our proposed method and demonstrate its 
improved sensitivity over conventional methods using real and 
simulated fMRI data.  
 

Index Terms— Spherical harmonics (SPHARM), 
invariant descriptors, functional magnetic resonance (fMRI), 
anatomical variability, spatial activation analysis. 
 

1. INTRODUCTION 
 
In recent years, functional magnetic resonance imaging (fMRI) has 
gained widespread recognition as an important means to study 
brain functionality. The functional response obtained over the 
duration of an fMRI experiment is analyzed on a voxel-by-voxel 
basis with the resultant activation statistics assembled into a 
statistical parameter map (SPM). The most common approach in 
generating an SPM is based on the general linear model (GLM) 
[1]. A key challenge in functional neuroimaging is in meaningfully 
combining results across subjects. The prevalent approach is to 
warp each subject’s brain to a common atlas, thereby normalizing 
it. Current spatial normalization methods may give an imperfect 
registration result, resulting in signals from functionally distinct 
areas to be inappropriately combined [2]. Spatial normalization 
may therefore lead to poor sensitivity in the fMRI data analysis due 
to reduced functional overlap across subjects [3]. An alternate 
approach recently proposed [3] aligns subjects at the region of 
interest (ROI), as opposed to the whole brain level. These methods 
do not capture the spatial activation pattern of the data completely. 

One of the first methods to study the spatial pattern of 
activation statistics used sums of activation statistics within 

spheres of increasing radii [4]. However these features have 
limited sensitivity to spatial patterns since they only capture 
changes in the radial direction. A more sensitive approach by Ng et 
al. [5] employs three dimensional moment invariant features 
(3DMI). However, both these methods do not account for 
intersubject variability present in the ROI masks and its effect on 
the analysis.  

In [8], the use of invariant SPHARM descriptors for 
analyzing convex anatomical structures (represented as binary 3D 
shapes) in magnetic resonance was proposed. SPHARM-based 
methods have previously been proposed in the context of 3D shape 
retrieval systems [6, 7] which are not limited to convex topologies. 
These methods proposed obtaining invariant SPHARM features by 
intersecting 3D shapes with shells of growing radii. This approach, 
however, could not detect independent rotations of a shape along 
the shells, thereby resulting in a non-unique representation [7]. In 
order to overcome this limitation, we have recently proposed a 
unique radial transform [9].  

In this paper, we extend our SPHARM-based representation 
to characterize the full 3D spatial fMRI activation pattern within an 
ROI. Each ROI feature is invariant to similarity transformations, so 
mutual alignment of subject brains (or ROIs) is not needed.  The 
other contribution of our proposed approach is in the novel way we 
account for the underlying structural (anatomical) inter-subject 
variability in the ROI binary masks using a subspace projection 
method. We validate our proposed technique on realistic simulated 
fMRI data and demonstrate improved sensitivity compared to the 
ROI-based normalization method [3]. Furthermore, we 
demonstrate the practical significance of our work using real data 
from an fMRI experiment conducted on subjects with Parkinson’s 
disease (PD). 

 
2. METHODS 

2.1. Invariant SPHARM-based spatial features 
A 3D object can be represented in the spherical coordinate system 

as ( )φθ ,,rΨ , where r is the distance from the origin, θ  is the 

zenithal angle and φ  is the azimuthal angle. Burel and Henocq 
proposed using the spherical harmonic expansion of such a 

function (1) to obtain rotationally invariant features [10]. ( )φθ ,*
lmY  

in (1) are the complex conjugate of the mth order spherical 
harmonic basis functions of degree l. l ranges from 0 to L, the 
bandwidth (explained later). k is the radial index.  
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Direct computation of (1) to characterize 3D functions is 
highly inefficient [11] and has thus not been used in a practical 
application. In [9] we proposed an alternate approach to compute 
this representation using concentric spherical shells and a radial 
transform. This representation enabled us to use a more 
computationally efficient transform described by Healey et al [11]. 
The origin of the shells is placed at the centre of mass of the 3D 
function’s equivalent binary mask to nullify translational effects.  
By representing the data as a set of spherical functions obtained by 
intersecting the 3D data with concentric shells of unit voxel 
thickness, we were able to simplify (1) into (2) and (3) (where r 
and k enumerate the shell numbers).  

 
Figure 1. Real fMRI data from the right cerebellar hemisphere is 
shown on the left (only activation values above t=2 shown for 
clarity). The intersection of the data with a shell is shown on the 
right. The physical values of both spherical angles are non-
uniformly spaced (Chebyshev nodes) [11].  

Smax is the number of spherical shells used. To enable a scale 
invariant representation across a set of 3D functions, a common 
number of shells, Smax , has to be evenly spaced within the extent of 
each function separately. For a cubic voxel grid, the spacing 
between the shells has to be at maximum, 0.5 voxels wide to 
enable fair sampling of all voxels. We first find the 3D function 
with the largest radius from the origin to the outer most non-zero 
point (measured in terms of voxels) Rmax. To ensure that the 
spacing constraint is met for all functions, Smax is then set to be 
2Rmax.  

Surface sampling along each of these shells is performed on 
an equiangular spherical grid of dimensions 2L×2L [11], where L 
is the bandwidth. This common bandwidth L for all shells of all 
functions is chosen to satisfy the sampling criterion for the largest 
shell, the one with radius Rmax. Recognizing that in applications 
pertaining to discrimination, high accuracy in the SPHARM 
representation is not a necessity, we use a heuristic approach based 
on the surface area to determine an adequate bandwidth. The 
surface area for the largest shell represents the maximum surface 
shell area (in terms of voxels) that the sampling grid needs to span; 
hence the minimum value for L is obtained by equating the surface 
area of this largest shell to the equiangular sampling grid (4).  

ππ max
2
max ,224 RLLLR =×=  (4) 

From the SPHARM representation (2) so obtained, we 
compute rotationally invariant features using (5) as outlined in 
[10]. h and i are used to index these features. Note that we reshape 
I into a single row vector, termed the feature vector, of 
dimensions max2RLD ×=  for later analysis.  
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2.2. Obtaining functional SPHARM features 
In an ROI based fMRI analysis experiment, the collected data can 
be viewed as having two parts. The binary ROI mask resampled 
from the high resolution anatomical scan contains only the 
structural information, whereas, the fMRI ROI statistics obtained 
by masking the whole brain SPM with this binary ROI mask 
contains both structural and functional data. The proposed method 
first derives SPHARM feature vectors as defined in section 2 (5) 
for both these functions (binary ROI mask and fMRI ROI 
statistics) using an Rmax value obtained considering all subjects. 
This ensures that all feature vectors obtained are of the same size D 
and are in the same scale, translation and rotationally invariant 
feature space. The SPHARM features obtained from the binary 
ROI mask are termed SPHARM-s (structural) since they capture 
only the structural aspects of the ROIs. The features obtain from 
the fMRI ROI statistics are termed SPHARM-fs (function + 
structure). These features are influenced by two factors. The first 
factor, which is the one of interest, is the functional aspect 
exhibited by the spatial pattern of the activation statistics within 
the ROI. The second factor is the shape of the anatomically-
defined ROIs. In functional studies this structural information 
reflects inter-subject variability, which adversely affects the 
primary aim of the analysis: resolving functional pattern changes 
across subject groups.  

To ensure no systematic bias enters the analysis during group 
discrimination (e.g. when trying to discriminate functional 
response of control subjects from PD patients), we first pool all the 
structural feature vectors (SPHARM-s) from both groups into a 
single matrix. Orthogonal projections of this matrix are then 
obtained using principal component analysis (PCA). The first d 
(usually observed to be 3) directions obtained reflect up to 97% of 
the unwanted effects of intersubject variability in structure of the 
ROIs. By projecting the pooled SPHARM-fs on the remaining D-d 
directions (directions which are minimally effected by structural 
variations), we obtain a new set of features which we term 
SPHARM-f. These features are minimally affected by structural 
variations, and thus ensure that subtle functional pattern changes 
will not be obscured by structural inter-subject variability. We 
further validate this claim with synthetic data experiments. 
2.3. Statistical group analysis 
To efficiently discriminate two groups of 3D fMRI distributions, 
we first derive SPHARM-f features for each subject’s ROI as 
explained in section 2. To determine the level of statistical 
significance in the difference between the groups, we employ a 
non-parametric permutation test as explained by Vesta et al [12]. 
Permutation tests generate the null distribution of a hypothesis 
from the data itself and hence do not need a prior assumption of its 
parameters. This makes it well suited for the analysis of long 
feature vectors whose generating probability distributions are not 
easily definable. This test results in a p value. If this value is below 
the statistical standard threshold of 05.0=α  is considered as an 
indication that significant difference exists between the groups 
being analyzed.  
2.4. ROI normalization approach (ROI-N) 
To demonstrate practical advantages of the discriminatory powers 
of the proposed approach, we compare results with those obtained 
from spatial normalization of the ROIs. We use an improved 
version of the ROI-AL method proposed by Stark and Okada [3]. 
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A non-linear spatial normalization approach [13] is used to obtain 
the parameters required to warp each subject’s anatomical T1 ROI 
to the template instead of the rigid registration proposed in [3]. A 
final test for difference in means across groups is performed at 
each voxel location yielding a group level t-statistic map. A height 
threshold is then applied to retain voxels that have significantly 
different means between the two groups. We then apply a cluster 
size threshold [14]. Existence of at least one surviving cluster after 
these thresholdings is taken as an indication that the groups being 
analyzed have a significant difference between them. 
 

3. DATA 
3.1. Simulated fMRI data  
Synthetic fMRI data sets were generated using binary ROI masks 
obtained from real MR data. Ten binary ROI masks of the right 
cerebellar hemisphere were obtained from the control subject 
group of our fMRI study. Rmax was found to be 19 voxels, 
corresponding to 57mm at 3mm voxel resolution. Spatial 
activation noise is generated from normally distributed values with 
zero mean and unit variance.  To mimic the intrinsic spatial 
correlation of fMRI data, the values are spatially smoothed using a 
Gaussian kernel (FWHM = 3.5mm). To obtain a functional 
centroid for the synthetic pattern, the centroid of each binary mask 
is randomly jittered by up to three voxels in all three spatial 
directions. This corresponds to a maximum displacement of 
12.7mm at a resolution of 3mm×3mm×3mm per voxel. An 
activation pattern, modeled after the examples used by Kontos and 
Megalooikonomou [4], is then generated by setting all voxels 
within a distance of 5 voxels from the chosen centroid to a value 
delta. While voxels at a distance between 5 to 10 voxels are set to 
–delta. The magnitude of delta can be varied to obtain the desired 
SNR. This pattern is smoothed using a Gaussian kernel (FWHM = 
3.5mm) before adding the independently generated noise explained 
earlier.  
3.2. Real fMRI data  
This study was approved by the University of British Columbia 
Ethics Board. 10 volunteers with clinically diagnosed PD 
participated in the study. 10 healthy, age-matched control subjects 
were also recruited. Subjects performed a bulb squeezing task at 
two different rates interspersed with steady periods. Each task 
(block) lasted for 20 seconds repeated for a total of 4 minutes. A  
Philips Achieva 3.0 T scanner equipped with a head-coil was used. 
Echo-planar T2*-weighted images with blood oxygenation level-
dependent (BOLD) contrast were acquired. Scanning parameters 
were: repetition time 2000 ms, echo time 3.7, flip angle 90°, field 
of view 240.00 mm, matrix  size = 128 x 128, pixel size 1.9 x 1.9 
mm.  Each functional run lasted 260 seconds. 36 axial slices of 
3mm thickness were collected in each volume, with a gap thickness 
of 1mm. A high resolution, 3-dimensional T1-weighted image 
consisting of 170 axial slices was acquired of the whole brain. 

The functional MRI data were pre-processed using trilinear 
interpolation for 3D motion correction and Sinc interpolation for 
slice time correction. The data were then motion corrected and 
manually segmented to obtain ROIs based on anatomical 
landmarks. Sixteen ROI’s, hypothesised to be involved in motor 
tasks, were drawn separately in each hemisphere. They were 
outlined on the unwarped, aligned structural scan for each subject 
using Amira software. The ROIS are: primary motor cortex (M1), 
supplementary motor cortex (SMA), prefrontal cortex (PFC), 
caudate (CAU), putamen (PUT), thalamus (THA), cerebellum 
(CER) and anterior cingulate cortex (ACC). The labels on the 

segmented anatomical scans were resliced at the fMRI resolution. 
A hybrid Independent Component Analysis (ICA) / General Linear 
Model scheme [15] was used to contrast and create statistical 
parametric maps (SPMs).  

 
4. RESULTS AND DISCUSSION 

4.1. Validation on Synthetic Data 
Two synthetic data sets were generated, one with no signal (only 
noise) and another with a known non-zero signal value. Signal to 
noise ration (SNR) was controlled by the magnitude of delta. By 
incrementing the SNR value in steps and using the SPHARM and 
ROI-N approach to discriminate the noise-only and signal+noise 
group at each SNR value, relative sensitivities of the methods were 
observed. Figure 2 summarizes the performance of the SPHARM 
approach. SPHARM-fs features are able to discern a difference in 
the two groups at -3.4 dB and higher. SPHARM-f features perform 
better, picking up the difference at an SNR value of -10.7 dB.  

Figure 3 presents the results of the ROI normalization 
approach for different height thresholds. Hayasaka et al [14] have 
shown that results are sensitive to the height threshold and cluster 
size threshold used, both of which are dependent on the estimated 
smoothness of the data. Based on their simulation results, we use a 
very liberal cluster size threshold of 4 connected voxels (26 voxel 
neighborhood) corresponding to zero smoothness. Height 
thresholds of 2, 3 and 4 were used. A value of 2 corresponds to an 
uncorrected (for multiple comparisons) p value of 0.0304 with 18 
degrees of freedom. This experiment shows that the sensitivity of 

both the SPHARM approaches outperforms the ROI-N method. 
SPHARM-f features perform better than SPHARM-fs features 
indicating the advantage of the principal component subspace 
approach in reducing intersubject structural variations. The graphs 

 
Figure 3. Sensitivity of the ROI-normalization approach. The 
number of voxels (V) surviving various height thresholds (2, 3 
and 4) is plotted against the SNR. A cluster size threshold of 4 
connected voxels was used in each case.  

 
Figure 2. Sensitivity of the SPHARM approach. The mean 
Euclidean distance (d) between the feature vectors of a group with 
only noise and of another group with increasing SNR is plotted 
against the SNR. The star and triangle markers denote distance 
which yielded a p value less 0.05, signifying that the method 
detected differences between the groups.  
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for both SPHARM methods show a consistent trend emphasizing 
the robustness of the method to noise. The ROI-N method shows a 
higher susceptibility to noise, especially the t>|3| graph in Figure 3.  
4.2 Application to Clinical fMRI Data  
SPHARM-fs and SPHARM-f features were derived for all 
participants as outlined in section 2. Table I displays the result of 
the SPHARM analysis. The table only shows ROIs for which at 
least one test found a significant difference in the activation 
patterns between the two frequencies (alpha=0.05). 

ROI 
SPHARM-

fs 
Normals 

SPHARM-
f 

Normals 

SPHARM-
fs 

PD 

SPHARM-
f 

PD 
L_CER 0.0613 0.4694 0.0239* 0.0202*† 
L_M1 0.1767 0.1761 0.0863 0.0104* 
L_PFC 0.5302 0.9497 0.1045 0.0378* 
L_THA 0.1200 0.0425* 0.0651 0.2513 
R_CER 0.0546 0.1599 0.0478* 0.0309*† 
R_PFC 0.6938 0.5273 0.0150* 0.0166* 

Table 1. SPHARM analysis of the two frequency tasks, N=10,000 
permutations were performed. † ROIs detected by ROI-N. 

The Sixteen ROIs from the twenty subjects were also 
analyzed using ROI-N. We used a range of height thresholds 
varying from 2 to 5 in steps of 0.5, while using a cluster size 
threshold of 4. Among the 32 combinations of tests performed (2 
subject groups with 16 ROIs), only the left and the right cerebellar 
hemispheres in the PD group had at least one cluster left.   

These results demonstrate that using the standard ROI 
normalization approach, increased movement rate was associated 
with an increase in activity of the cerebellum bilaterally in PD 
subjects, but not in healthy controls. This is consistent with an 
increased reliance on visual feedback in PD subjects mediated by 
the cerebellum [16]. The SPHARM-fs features, in addition, were 
able to detect changes in the activation of the ipsilateral prefrontal 
cortex of PD subjects. This region is associated with performance 
monitoring, thus a change in the activity of this area may reflect an 
increased attentional demand in PD subjects as the movement 
becomes more difficult. The SPHARM-f approach, in which 
structural variations in ROI anatomy across subjects are 
minimized, showed greater sensitivity. Specifically, control 
subjects showed a change in the activation of contralateral 
thalamus with increasing movement rate, consistent with an 
increased output from the basal ganglia. PD subjects were 
apparently not able to adjust the output through the thalamus, and 
instead showed adjustments in the output from bilateral 
cerebellum, bilateral prefrontal cortex, and contralateral M1 in 
response to increased task demands. Increased activity of M1 and 
cerebellum in PD has previously been suggested to be a 
compensatory mechanism [17]. It is thus possible that 
compensatory mechanisms are recruited during tasks which make 
greater demands on the motor system, and rely on changes to the 
shape as well as the level of activation. 

 
5. CONCLUSIONS 

 
In this paper, we proposed a new technique for analyzing spatial 
activation patterns in fMRI data using 3D SPHARM features. The 
features, which are unique to an ROI, were obtained by 
intersecting 3D data distributions with concentric shells of 
increasing radii followed by a radial transform. Our other main 
contribution was a novel approach to account for anatomical shape 
variations across subjects while discriminating subtle changes in 

spatial distribution of fMRI activation patterns within an ROI. The 
effectiveness of the proposed approach in mitigating structural 
variability, robustness to noise and comparative sensitivity were 
validated on synthetic data. We also demonstrated our method’s 
ability to discriminate functional pattern changes within anatomical 
ROIs in real fMRI data. By applying our spatial analysis technique, 
we were able to demonstrate differences in the way that PD 
subjects and healthy controls respond to an increased task demand, 
reflecting failure of PD subjects to increase basal ganglia output, 
and a reliance on cerebellar and cortical activity to enable 
successful performance. This adjustment may reflect a 
compensatory mechanism in PD subjects. An interesting 
application of the proposed approach would be to compare 
activation patterns between subject groups that are expected to 
have systematic changes in both structural and functional aspects.  
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