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Université Pierre et Marie Curie – Paris 6, 75005 Paris, France

ABSTRACT

When studying problems such as tomography with bounded

noise or IMRT, we need to solve systems with many linear

inequality constraints. Projection-based algorithms are often

used to solve this kind of problem. We see how previous work

for accelerating the convergence of linear algorithms can be

recast within the most recent generic framework, and show

that it gives better results in specific cases. The proposed

algorithm allows general convex constraints as well and the

conditions for convergence are less restrictive than tradition-

nal algorithms. We provide numerical results carried out in

the context of tomography and IMRT.

Index Terms— Tomography, IMRT, linear inequality

constraints, image reconstruction.

1. INTRODUCTION

Most imaging problems can be formulated as a feasibility

problem, for which many algorithms have been developped

in the last 30 years [6]. The idea is to describe the problem in

the Euclidian space H = R
N with a number of constraints,

which are derived from observed data and a priori on solu-

tions. Most algorithms require those constraints to be convex.

We shall therefore consider the following mathematical for-

mulation, where (Si)i∈I in H are closed convex sets.

Problem 1.1 (Convex Feasibility) Find a point in S =⋂
i∈I Si.

We are especially interested in two biomedical imaging

experiments: tomography with bounded noise, and Intensity

Modulated Radio Therapy (IMRT). For those particular prob-

lems, most of the constraint sets are actually a lot more sim-

pler than just convex sets, they are hyperslabs. A hyperslab is

a set of the form :

Si =
{
x ∈ H | βi − δi ≤ 〈x | ai 〉 ≤ βi + δi

}
, (1)

where ai ∈ H�{0} is the normal direction, βi ∈ R gives the

location in the Euclidian space, and δi > 0. Without loss of

generality we shall from now on consider ‖ai‖ = 1. The cor-

responding central hyperplan Hi is
{
x ∈ H | 〈x | ai 〉 = βi

}
.

Hyperslabs appear as constraints in many other experiments,

even with unbounded noise [4, 6], and the technique described

in this article can be used as well.

It could still be useful to consider convex sets which are

not linear, in order to be able to embed as much a priori
knowledge as possible in the problem statement (for example

total variation bound, or some Fourier constraint sets). Our

aim in this article is to provide a generic, though efficient,

algorithm to solve problem 1.1 in this particular cases.

We start by describing the different algorithms and recall

some theoretical results. We then propose and describe a spe-

cific operator suitable to be used in the most recent algorithm.

The last sections describes and presents some numerical re-

sults.

2. ALGORITHMS

To solve problem 1.1, the original POCS algorithm (Projec-

tion Onto Convex Sets) was proposed by Bregman in 1965 [2]

for a finite number of constraints. It uses a sequential (sets are

considered one at a time) and cyclic control. There is no re-

laxation. Bregman proved the convergence if S is not empty.

Algorithm 2.1 (POCS, Bregman, 1965) xn+1 = Pin
xn,

with a static control in = (i mod card I) + 1.

In the special case where all sets are hyperslabs, G. T. Her-

man proposed the following algorithm [9], called Algebraic

Reconstuction Technique 3:

Algorithm 2.2 (ART3, Herman, 1975) xn+1 = Uin
xn,

where Ui is a new operator he introduced, and (in)n∈N is the

same static control as in 2.1. He proved the convergence in

finite steps under the hypothesis that S is full dimensional.

This kind of result is common with such a strong hypothesis.

This algorithm is now seen as a reference for this special case

and is often used in comparisons when designing new algo-

rithms. The slight improvement introduced in the algorithm

ART3+ [10] is related to the control, which is not what this

article focus on.

For the generic problem 1.1, the original POCS algorithm

has been enhanced in many different ways. The projection
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is first generalized using the subgradient projection. If Si is

defined by Si = {x ∈ H | fi(x) ≤ 0} (which is always

possible), the subgradient projection is defined by:

Gix =

{
x− fi(x)u/‖u‖2 si fi(x) > 0;

x, si fi(x) ≤ 0,
(2)

where u ∈ ∂fi(x) is any subgradient of f at x. This is an

approximation that is often used when the actual projection

has no close form or cannot be computed efficiently on a a

computer. The projection is a special case of the subgradient

projection. See the references in [1, 7] for more details.

Then, class T operators were introduced in [1], and are

a generalization of projections and subgradient projections:

subgradient operators are in class T [1]. We shall note FixT
the set of fixed points for the operator T : FixT = {x ∈ H |
Tx = x}. Given two points x and y in H, we consider the

set H(x, y) = {u ∈ H | 〈u− y | x− y 〉 ≤ 0}, which is a

half space if x �= y. An operator T : H → H is said to be in

class T if (∀x ∈ H) FixT ⊂ H(x, Tx).
The state of the art of algorithms using several projections

in parallel is EMOPSP [7]. The following algorithm is a gen-

eralization to class T of EMOPSP (see [8] for a description

and convergence results).

Algorithm 2.3

xn+1 = xn + λnLn

( ∑
i∈In

ωi,n(Ti,nxn)− xn

)
, (3)

where x0 ∈ H, ε ∈]0, 1], δ ∈]0, 1] and ∀n ∈ N:

(a) ∅ �= In ⊂ I is the control,

(b) ∀i ∈ In Ti,n ∈ T and FixTi,n = Si,

(c) λn ∈ [ε, 2− ε] is the relaxation parameter,

(d) ωi,n ∈]δ, 1] are the weights, with
∑

i∈In
ωi,n = 1,

(e) Ln =

⎧⎪⎨
⎪⎩

∑
i∈In

ωi,n‖Ti,nxn − xn‖2
‖∑

i∈In
ωi,nTi,nxn − xn‖2 if xn /∈ S,

1 else.

The control is supposed admissible, which means that there

exist strictly positive integers (Mi)i∈I such that

(∀(i, n) ∈ I × N) i ∈
n+Mi−1⋃

k=n

Ik.

Every cyclic control (as in algorithm 2.1) is admissible. For

comparison purpose, we shall call EMOPSP the same algo-

rithm, with the following standard parameters: (∀n ∈ N)

λn = 1.99, Ti,n = Gi (subgradient or projection), and uni-

form weights ωi,n over selected In. We use the indice par-

tition I = I1
⋃
I2, where I2 are indices for which Si is an

hyperslab, and I1 = I \ I2.

Fig. 1. Left: original phantom used for the tomography ex-

periments. Right: reconstruction example.

3. A SPECIFIC OPERATOR

The algorithm 2.3 is general and has many parameters which

can be tuned for a specific application. However, finding how

to choose all of those parameters is often difficult. We focus

on the relaxation parameter λn. Even though enhanced speed

can be achieved using small relaxation in some rough corner

cases [11], in the average case, our experience is that the best

bet is to use over-relaxation, by setting (∀n ∈ N)λn = 1.99.

The algorithm 2.2 (ART3), proposed by G. T. Herman [9] can

be reformulated as a special choice for the relaxation param-

eter in the cyclic case. We shall see how this can be extended

to the general, parallel scheme of algorithm 2.3, and we pro-

pose a new version of the algorithm 2.3 adapted to problems

where many constraints are hyperslabs. Let us consider the

operator used to enforce the linear inequality constraints Si,

when i ∈ I2. The projection of the vector x on Si is the vector

PSi
x (shortened as Pix from now on) defined by⎧⎪⎨

⎪⎩
x, if x ∈ Si,

x+ (βi − δi − 〈ai | x 〉)ai if 〈ai | x 〉 < βi − δi,

x+ (βi + δi − 〈ai | x 〉)ai if 〈ai | x 〉 > βi + δi.

(4)

The new operator in ART3 is:

Uix =

⎧⎪⎨
⎪⎩
x, if x ∈ Si ,

PHix, if | 〈ai | x 〉 − βi| > 2δi ,

2Pix− x, else ,

(5)

from which we have FixUi = Si. Unfortunately, this opera-

tor does not belong to the class T . It can be written as an over-

relaxation of the projection onto Si, Uix = x+ν(x)(Pix−x)
with

ν(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x ∈ Si ,

1 +
δi

d(x, Si)
, if | 〈ai | x 〉 − βi| > 2δi ,

2, else .

(6)

We have 1 ≤ ν(x) ≤ 2, and Ui are mostly over-relaxed pro-

jection onto Si. Using the proposition [1, 2.6(iii)] we con-

clude that the operator Ti = (Id +Ui)/2 has the same fixed
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Fig. 2. Minimum and maximum value for the IMRT exper-

iment. The grey part on the left is the tumor. The two dark

parts on the right are places especially fragile.

points as Ui, and it belongs to the class T . We use this oper-

ator Ti for the sets with indice in I2, while for the sets with

an indice in I1, we keep the general subgradient projection

operators Gi.

Algorithm 3.1 Algorithm 2.3 with, (∀n ∈ N): (a) λn = 1.99
(b) Ti,n = Gi if i ∈ I1 (c) Ti,n = Ti if i ∈ I2 (d) Uniform
weights ωi,n over selected In.

ART3 is a very specific case for this algorithm. The use of

the relaxation factor 1.99 instead of 2 allows far less restricive

hypothesis for convergence results while it doesn’t make any

real difference with respect to the speed.

4. APPLICATIONS

Whether the use of operators Ti enhances the speed of the al-

gorithm or not is highly dependant on the nature of the prob-

lem. For example, we consider in [3] a problem unrelated

to biomedical imaging: the deconvolution of a signal in one

dimension, with added noise. We show that when using the

operator Ti, the convergence takes more time than with tradi-

tional algorithms.

To compare the algorithms, we shall use common, though

not trivial, numerical experiments: tomography with bounded

errors, and IMRT. Both applications are taken from medical

imagery. More details can be found in [5].

4.1. Computer Tomography

This is a typical problem of image reconstruction, and can be

described in two or three dimensions. We shall describe the

2D case for simplicity. We start from the original phantom

shown in Fig. 1, whose pixel range is [0, 255]. This is a 2D

image, discretized on a 128 × 128 = N grid, and can be

seen as a point in the space H = R
N . We shall denote x this

image. Given a direction, specified as an angle θi from the

center of the phantom, we can compute the projection along

this direction or view, which is a signal in one dimension.

The corresponding Euclidian space is R
M , where M is the

number of pixels on each view. There are q ∈ N such different
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Fig. 3. Tomography with bounded noise: Convergence time

repartition based on several hundred noise realizations for

each algorithm.

views. The problem is to reconstruct the original image from

the observations, using as much a priori as possible. The

projection is a linear transformation and, if we suppose that

the observation noise on each pixel for each view is bounded

by δ, we finally have the following constraint sets:

Si,k =
{
x ∈ H | | 〈Lix− si | ek 〉 | ≤ δ

}
, (7)

where si ∈ R
M , 1 ≤ i ≤ q is the observed data and

(ek)1≤k≤M is the canonical basis for R
M . Our aim is to

compare the relative speed of the operators used to handle

the hyperslabs, and we shall only use here one more con-

straint: the range of the image is imposed through the set

S0 = [0, 255]N . For our experiments, we shall use q = 10
views, uniformely spaced over the full range of angle (π
radians). The bound δ is set to 200/256. With such parame-

ters, actual convergence is achieved within few seconds on a

contemporary computer (AMD 64bits, dual core at 2.2 GHz)

using most algorithms. The only one that does not converge

in finite time is the original POCS, and this is explained by

the fact that each step computes the exact projection without

any relaxation, hence never going further than the frontier.

The exemple of two non-orthogonal secant lines in R
2 shows

why convergence can take an infinite number of steps.

4.2. Intensity-Modulated Radiation Therapy

Intensity-Modulated Radiation Therapy (IMRT) is a signal

problem found in several medical treatments, most notably

cancer treatments. Computer-controlled X-rays accelerators

can distribute precise dose of X-rays and those (straights)

beams can be sent through the patient body along different

directions. For every given part of the body, the total dose of

X-rays received depends linearly of all the beams sent. Sup-

pose a 2D section of the patient is discretized as an image
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x of N pixels (for exemple N = 1024 × 1024 pixels), and

there are M beams used (different positions and directions).

We shall note y ∈ R
M the vector of intensities of the whole

beam. Then the dose received at pixel 1 ≤ i ≤ N can be

written as xi = Liy. The therapy planning consist in giving

for every pixel a minimum and a maximum value for the dose

received. For a pixel belonging to a tumor, one would want

a high minimum value, while for a pixel belonging to sur-

rounding normal tissue the maximum authorized value would

be low, and even lower for fragile tissues. Medical personnel

decide those minimum and maximum values. The purpose

of the algorithm is to find the value of the intensities y, con-

strained to those medical prescriptions and the actual intensity

range of X-rays accelerators. See [5] for further details. We

used the minimum and maximum values shown in figure 2,

and 8 different angles uniformely spread.

5. NUMERICAL RESULTS

The criterion we chose to use is the relative proximity func-

tion φ0(x) = φ(x)/φ(x0), where φ is the proximity func-

tion: φ(x) =
∑

i∈I wi‖xn − Pixn‖2, with uniform weights

(wi = 1/ card I), which describes how far away we are from

being feasible. See [3] for a discussion on the different cri-

teria. The time displayed on the X axis of the figures is the

total CPU times. For the parallel algorithms, this is the sum

of CPU time. We used 50 processors in parallel for our tests.

The first point that should be highlighted is that the parallel

algorithms are a lot faster than the serial ones, even on a non-
parallel computer. This is due to the highest range for the

relaxation allowed by the parameter Ln.

The results for the IMRT experiments (fig 4) show that

there is a gain in using the Ti operator, but not significant.

Obviously, concerning the tomography, the convergence de-

pends on the noise realization. To have a fair comparison, we

did several hundred tests with different noise realizations. We

recorded the time needed to reach convergence (Using the cri-

terion φ0(x) < −200dB). The result is displayed in figure 3.

It shows that our algorithm performs better. The variability is

very small.

6. CONCLUSION

The proposed algorithm provides faster convergence results

for problems of type 1.1. It can use more general constraints

and parallel computations. The convergence results are also

more general.
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