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ABSTRACT 

 
Multiple-Image Radiography (MIR) is an analyzer-based 

phase-sensitive x-ray imaging method, which is a potential 
alternative to conventional radiography. MIR 
simultaneously generates three planar images containing 
information about scattering, refraction and absorption 
properties of the object. These parametric images are 
acquired by sampling the angular intensity profile of the 
beam passing through the object at different positions of the 
analyzer crystal. Like many of the modern imaging 
techniques, MIR is a computing imaging method and the 
noise in MIR, in addition to the imaging conditions, 
depends also on the estimation of the parameters. In this 
work, we use Cramér-Rao lower bound to quantify the noise 
in MIR estimated images and investigate the effect of 
different sampling strategies at the analyzer on this bound. 
We also evaluate the performance of an estimator with 
respect to this bound. 
 

Index Terms— Multiple-Image Radiography, Cramér-
Rao Lower Bound, Diffraction-Enhanced Imaging, Phase 
Sensitive Imaging 
 

1. INTRODUCTION 
 

Multiple image radiography (MIR) [1] is a planar 
imaging method which is an improvement of the DEI [2] 
technique. MIR can simultaneously calculate three different 
parametric images from a set of measurements acquired 
using the system shown in Figure 1. This imaging system, 
also known as a Bonse-Hart camera [3], includes a 
monochromatic x-ray beam and an analyzer crystal. The 
parametric images generated in MIR are attenuation, 
refraction and ultra-small-angle x-ray scatter (USAXS). The 
attenuation image shows a combination of absorption and 
Compton-scatter extinction. The refraction image in MIR 
shows the integrated effect of refractive index variations 
along the beam path and is suitable for visualizing soft 
tissues with small absorption coefficients, e.g. tendons and 
cartilages. The USAXS image represents the sub-pixel 
textural structure of the object and is suitable for observing 
textural soft tissues such as breast tumors or calcaneal fat 
pad. It should be noted that similar methods have also been 
proposed independently in [4] and [5]. 

Because the contrast of the refraction and scatter images 
does not rely on absorption of x-rays by the object, MIR can 
be performed at higher energies than conventional 
mammography (e.g., using a tungsten anode rather than 
molybdenum); at these higher energies, radiation exposure 
to the patient is low and refraction contrast remains high for 
soft tissue imaging. 

 
Figure 1. MIR Imaging System 
 

Because MIR is a fairly new technique, its basic 
properties are as yet unknown.  For example, the noise 
performance has not been fully described, and it is not 
known how best to acquire the data (specifically, how 
analyzer positions must be used).  This paper seeks to 
answer both questions.  

In our previous work [6], the noise in estimated MIR 
images was quantified by using the Cramér-Rao lower 
bound (CRLB) [7] for each image. CRLB is the minimum 
bound on the variance of any unbiased estimator and defines 
the best noise performance that can be obtained in 
parameter estimation from a source of data.  In that work, 
we made a simplifying assumption that the MIR images are 
computed independently of one another, which is never the 
case in practice; therefore, our earlier results were 
somewhat unrealistic.  In this work, we improve the noise 
quantification by using the CRLB for vector estimators and 
used this bound to investigate the noise performance in MIR 
data acquisition procedure. We then evaluate the 
performance of a simple estimator which was introduced in 
[8] and compared its variance to the bound in order to seek 
a minimum-variance unbiased (MVU) estimator. 
 

2. IMAGING MODEL 
 

In MIR imaging system shown in Figure 1, the object is 
first illuminated with a collimated, monochromated X-ray 
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beam obtained using a pair of silicon (Si 333) crystals. 
While the X-ray beam passes through the object, it will be 
affected by the object properties, which will change the 
beam angular intensity profile (AIP), i.e. x-ray power as a 
function of the angular direction of propagation. Next, an 
analyzer crystal, which is a narrow angular filter, is used to 
analyze the beam AIP. This angular filter passes only beam 
components that are traveling at or near its Bragg angle, b . 
Since the angular range for this filter is in the order of 
microradians we can assume that there is no cross talk 
between the adjacent pixels on the detector and the imaging 
could be considered as pixel-by-pixel. By measuring the 
intensity at different angular positions of the analyzer, , 
the AIP of the beam can be effectively measured. The AIP 
for each pixel can be used to extract the information about 
attenuation, refraction and USAXS which will be described 
later. 

First, we characterize the imaging system by ( )R which 
is the AIP that would be measured in absence of the object 
on the detector plane. Then we can write the beam AIP with 
the presence of the object on the detector surface as: 

( ) ( ) ( )g R f     (1) 
where  denotes convolution with respect to  and ( )f  
represents the object function which is the impulse response 
of the object, i.e. the AIP that would be measured if the 
object were illuminated with a perfectly collimated beam 
having an AIP that is a Dirac delta function. For the object 
function, we use the model proposed in [9] which can be 
written as: 
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where 1 ( )
l
A r dl  is the attenuation caused by the object 

and is the line integral of absorption coefficient, ( )A r , 

along the beam path l , 2 ( )
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 is the angular 

shift of the beam centroid which is the integral of refractive 
index gradient, ( )n r
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, 3 ( )

l
usaxs r dl  is the angular 

beam divergence and is the integral of the USAXS 
parameter, ( )usaxs r  and ( , , )Tr x y z . 

Now the expected value of the measured discrete AIP on 
the detector can be modeled as:  
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where 1,2,...,m M  represents the index of the analyzer 
angle, m , 0I  is the maximum count of photons per pixel 
for M=1 and [.]E  denotes the expected value. Since we 
envision practical implementation of MIR using the 
conventional x-ray tubes, where flux may be the 
performance constraint, we assume that the data is photon-

limited so Poisson noise will be the dominant noise source 
in MIR images [1]. Under this noise model the likelihood 
function of the data is given by: 
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where [1], [2],..., [ ]g g g Mg  is the data vector and 

1 2 3, ,  is the MIR parameter vector to be estimated. 
 

3. SAMPLING STARTEGIES 
 
3.1. CRLB Theorem for MIR Parameters 
 
To investigate the effect of noise on each estimated 
parameter we consider the theoretical lower bound (CRLB) 
on the noise variance for unbiased estimators. The CRLB 
theorem [7] for vector estimation states that the variance of 
any unbiased estimator, î  of an element, i  of parameter 
vector  is bounded by: 

1ˆ( ) ( )i ii
Var I     (5) 

in which ( )I  is the Fisher information matrix which its 
elements are defined as: 
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By using (1)-(4) in (6) we can derive the following Fisher 
information matrix for MIR parameters: 
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In our problem the bound cannot be computed 
analytically in this form, however, we can compute the 
bounds numerically for any given parameter vector. 

 
3.2. Effect of Sampling on CRLB 
 
In imaging a particular object where the rocking curve is 
known, the most important factor affecting the noise is the 
angular sampling pattern of the analyzer crystal. In this 
section we analyze the behavior of CRLB as we increase the 
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number of angular samples, M, in the analyzer. We consider 
the sampling pattern at the analyzer, 1 2( , ,.... )M M , to 
be symmetrical around 0  and distributed in the range of 
[ 6 : 6] rad . We estimate the CRLB for each sampling 
pattern as: 

1( ) ( ; )i M M ii
CRLB E I   (7) 

where .E  represents the expectation over the probability 
density function (pdf) of MIR parameter vector, . Taking 
the expectation in (7) is an intractable problem. Therefore, 
we approximate the expectation by the arithmetic average of 
the CRLB over the MIR parameters in a simulation phantom 
which is shown in Figure 2. The parameter values in the 
phantom are assigned to match the corresponding values 
form a human thumb joint study. 
 

 
Figure 2. MIR phantom based on a human thumb 

We estimate the expectation in (7) by: 
1

1

1( ) ( ; )
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i M M ii
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where , 1,...,c c C  represents the values of the MIR 
parameter vector, , at the thc  pixel in the phantom. The 
changes in CRLB for different number of samples are 
shown in Figure 3.  

 
Figure 3. CRLB vs. number of samples for MIR parameters 

We assumed 0I 750 photons/pixel which corresponds 
to the maximum count of 100 photons/pixel for M=25. We 
can see the improvement in CRLB as we increase the 
number of analyzer samples. However, after 11 samples the 
improvement in the bound becomes small and there is 
almost no benefit in acquiring more than 11 samples from 
the analyzer for an MVU estimator. 

 
4. VARIANCE OF ESTIMATION 

 
The graphs in Figure 3 can also be used to evaluate the 
performance of each estimator in MIR. Here, we chose an 
estimator for MIR parameters [8] in order to investigate the 
effect of the sampling pattern on the estimation variance. 
First, we describe the estimation procedure: 

We define the normalized AIP as: 

1
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M
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and the total intensity that would be measured in the 
absence of the object will be denoted as: 
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where [ ] ( )mE R m R , measured on any pixel in the 
detector plane in the absence of object. We also define the 
AIP shift of the imaging system by: 
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where 12 rad
1M

 is the angular spacing between the 

measurements. Now we can estimate the three MIR 
parameters at each pixel on the detector as follows: 
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We calculated the variance of estimation by using 1000 
noise realization for each pixel in the phantom and 
averaging the calculated variances over all pixels in the 
image. Using the same noise realization, we also calculated 
the Mean Square Error (MSE) and the squared bias of the 
estimation. The results are shown in Figure 4. We can see in 
these graphs that this estimator is highly biased for low 
number of samples, hence, making the variance lower than 
the unbiased CRLB. But after 11 samples the bias of the 
estimation becomes negligible compare to the variance. 
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Figure 4. Variance, MSE and squared-bias of the estimator vs. 
different number of samples compared to CRLB. 

 Another interesting result in Figure 4 is that not only 
this estimator is fairly unbiased after 11 samples; it also 
achieves CRLB and hence is an MVU estimator. The results 
confirm our previous conclusion that there is no decrease in 
the variance of estimation after 11 samples. 

In order to see the above results in a visual form, the 
estimated images for 4 different numbers of samples are 
shown in Figure 5. The image rows are marked by letters A, 
B, C and D which correspond to the same letters on the 
attenuation graph in Figure 4. 

 
5. CONCLUSION 

 
To investigate the effect of sampling strategies on the noise 
in MIR images we have derived the vector form of the 
Cramér-Rao lower bound for MIR parameters. By assuming 
uniform sampling and using probability density function of 
MIR parameters in a phantom study, we numerically 
estimated this bound for different numbers of samples. We 
found that by using more than 11 samples from the analyzer 
there is not much improvement in CRLB values and we can 
save the imaging time by not measuring more than 11 
samples from the analyzer. 

We also evaluated the performance of a simple and fast 
estimator and compared the results to the CRLB values. 
Presented results showed that for uniform sampling, this 
estimator asymptotically achieves the CRLB after 11 
samples and becomes a minimum-variance unbiased 
estimator. 

 

 
Figure 5. Estimated MIR images using different number of 
samples in analyzer. 

In future work, we seek to minimize the CRLB value 
by deforming the sampling pattern from uniform and find an 
unbiased estimator in the case of non-uniform sampling that 
can achieve the CRLB. We will also investigate the effect of 
sampling strategies on three dimensional MIR images 
reconstructed by CT-MIR [8]. 
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