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ABSTRACT

Optical Sections of biological samples obtained from a flu-
orescence Confocal Laser Scanning Microscopes (CLSM)
are often degraded by out-of-focus blur and photon counting
noise. Such physical constraints on the observation are a re-
sult of the diffraction-limited nature of the optical system, and
the reduced amount of light detected by the photomultiplier
respectively. Hence, the image stacks can benefit from post-
processing restoration methods based on deconvolution. The
parameters of the acquisition system’s Point Spread Function
(PSF) may vary during the course of experimentation, and so
they have to be estimated directly from the observation data.
We describe here an alternate minimization algorithm for the
simultaneous blind estimation of the specimen 3D distribu-
tion of fluorescent sources and the PSF. Experimental results
on real data show that the algorithm provides very good de-
convolution results in comparison to theoretical microscope
PSF models.

Index Terms— confocal microscopy, point spread func-
tion, Richardson-Lucy algorithm, total variation regulariza-
tion, blind deconvolution

1. INTRODUCTION

The CLSM is an optical fluorescence microscope that scans
a biological specimen using a focused laser spot and uses a
pinhole before the detection to reject the out-of-focus fluores-
cence [1]. The focusing of the objective lens when done at
different depths of the specimen allow 3D visualization of the
volume and removing the need for physical sectioning.
The optics of any observation system allows inspection of an
object, but the image finally obtained is often not perfect.
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Mathematically the process of degradation is characterized
by the PSF, which models the propagation and recording of
the electromagnetic radiation from a point source. The PSF
displays a radial diffractive ring pattern [2] (expanding with
defocus) that is introduced by the finite-lens aperture. Thus
each optical section has also the out-of-focus contributions
from other regions of the object. Although this contribution
is greatly reduced in CLSM, it is not totally eliminated.
The main difficulty in restoring the 3D image is that the ex-
act PSF is not precisely known, denoising the image can in-
duce artifacts and restoration by deconvolution is an ill-posed
problem. There are three methods to obtain the microscope
PSF for the deconvolution process. Firstly, point-like objects
in the specimen may be imaged and processed to obtain the
PSF. This experimental PSF [3] is in itself dim (therefore may
be recorded only at a finite range of defocus values), is con-
taminated by noise and requires point-like sources in every
image. In addition, PSF measured in one sample (typically
fluorescent microspheres stuck to a cover slide) may not rep-
resent the exact PSF applicable for another sample (such as
live cells in physiological buffers). For the second case, when
an analytical model [4] is used, the PSF generated is noise
free. However, the optical parameters of the set up (for exam-
ple small residual phase aberrations in the objective) are not
known or might change during the course of an experimen-
tation (for example, due to heating of live samples). Thus,
we propose a blind deconvolution method based on a third
approach that reconstructs a close approximation to the spec-
imen structure and estimation of the unknownPSF parameters
from the observation simultaneously.

2. JOINT BLUR AND OBJECT ESTIMATION

2.1. Image Formation Model

The detector of the fluorescence microscope behaves ideally
as a photon counter (ignoring electronic amplification noise).
For low illumination conditions, the number of photons reach-
ing the detector is small, and the statistical variation in the
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number of detected photons can be described by a Poisson
process. If o and i denote the original and observed images
respectively, the image degradation model can be expressed
as,

i(x) = P ([h ∗ o](x)) (1)
The object intensity is defined as {o(x) : x ∈ Ω}, where Ω
is the region over which the intensity is non-vanishing and
is finite in nature. Here, h(·) is the PSF of the microscope,
and (∗) denotes the convolution operator (assuming linearity
property of the imaging system).

2.2. Joint Maximum-Likelihood Estimation

Since the general noise distortion is assumed to be dominated
by Poisson noise, the observation of a fluorescence object
(X = o) can be modeled as [5]:

P (Y = i|X = o, H = h) =
∏

x∈Ω

[h ∗ o](x)i(x)e−[h∗o](x)

i(x)!

(2)
The maximum of this joint likelihood can be found as:

(ô, ĥ) = argmax
(o,h)

P (Y = i|X = o, H = h) (3)

= argmin
(o,h)

(− log[P (Y = i|X = o, H = h)])

It is easy to see that direct minimization of (3) can yield many
possible solutions for o and h (for example, the observed data
and an impulse function is one such solution), and their simul-
taneous estimate from (3) is difficult. Hence, we introduce
some beliefs on the object and the PSF to confine the solution
space.

2.3. A priori object model and Total Variation (TV) reg-
ularization (Rudin et al. [6])

The Gibbsian distribution P (X = o), captures the prior
knowledge of the object, and is the regularization model.
(X = o) is a low-order, homogeneous, isotropic Markov
Random Field (MRF), over a 6 member neighborhood ηx ∈
Vx of the site x ∈ Ω (for 3D images)

P (X = o) ∝
1

Zλ

e
−λ

P

x∈Ω

|∇o(x)|

, (4)

where |∇o(x)| = (
∑

x
′∈ηx

(o(x) − o(x′))2)
1

2

and Zλ =
∑

o∈Λ

e
−λ

P

x∈Ω

|∇o(x)|

Λ is a finite set of possible specimen solutions, λ is the global
hyperparameter, ηx is the set of all cliques for the neighbor-
hood system Vx over the lattice L. |∇o(x)| is the potential
function associated with each clique and Zλ is a normalizing
constant called the partition function.

2.4. 3D Gaussian PSF model

By using a model for the microscope image acquisition phys-
ical process, we can greatly reduce the number of free param-
eters describing the PSF and thus dimnish the solution space.
It was shown in [7] that the CLSM PSF is well modeled by a
3D Gaussian function as:

hσρ,σz
(ρ, z) =

1

Zσρ,σz

e
(−ρ

2

2σ2
ρ

− z
2

2σ2
z

)
(5)

where ρ =
√

(x2 + y2) and Zσρ,σz
= (2π)

3

2 |Σ|
1

2 .
A diffraction-limited PSF has a circular symmetry about the
optical axis and mirror symmetry about the central xy-plane.
Thus, the covariance matrix should be diagonal and |Σ| =
σ4

ρσ2
z .

2.5. Joint Maximum A Posteriori estimation

Therefore the posterior probability is given as:

P (X = o, H = h|Y = i) ∝
e
−λ

P

x

|∇o(x)|

Zλ

· (6)

∏

x∈Ω

[h(θ) ∗ o](x)i(x)e−[h(θ)∗o](x)

i(x)!

where, θ = (σρ, σz).
Thus, the cost function to be minimized is:

L(o, h(θ)) = λ
∑

x∈Ω

|∇o(x)| + log[Zλ] (7)

+
∑

x∈Ω

[h(θ) ∗ o](x) −
∑

x∈Ω

i(x) log[h(θ) ∗ o](x)

2.5.1. Object restoration

Given the initial value (or estimate) of θ̂, (7) can be solved
for the object o by adopting the TV regularization, and the
Richardson-Lucy (RL) algorithm [4], which is an expectation-
maximization algorithm [8] for computing the ML estimate.
When the relative difference measure between the successive
iterations is smaller than a threshold (t) (see [2]), we stop the
algorithm to get the final deconvolved image.

2.5.2. Parameter estimation on complete data

Due to the invariance property of ML estimation, we can say
that,

ĥML(x) = h(x, θ̂ML) (8)
is the ML estimate of the PSF. The method outlined in Sec-
tion 2.5.1 requires the knowledge of parameters θ. This can
be obtained by minimizing the following function,

L(θ|i, ô) ≈ −
∑

x∈Ω

(i(x) log[h(θ)∗ ô](x))+
∑

x∈Ω

[h(θ)∗ ô](x)

(9)
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The terms that are independent of θ have been excluded. We
now use a gradient based algorithm to estimate θ. The search
direction involves calculating∇θL(θ) and it is given as:

∇θL(θ) =
∑

x∈Ω

((hθ ∗ ô)(x)−
i(x)

(h(θ) ∗ ô)(x)
·

(hθ ∗ ô)(x)) (10)

where, hθ = ∂
∂θ

h(θ). We stop the computation if the rel-
ative difference measure between the successive iterations is
smaller than a specific threshold ε (in practice 10−4), and as-
sume the last estimate as the best solution.
The starting values for both the object and the parameters are
critical as the cost function (7) is not convex w.r.t them. For
the object we can simply assume here that the observation is
the closest approximation we can find to the object. How-
ever, for the parameters, this is not straightforward. Since the
only condition that has to be satisfied is that the initial states
lie outside the solution space, we start with large values and
gradually descend down to the solution.

3. RESULTS

In this section, we present the application of the proposed al-
ternate minimization method to restore real data.

3.1. Imaging Setup

The Zeiss LSM 510 confocal microscope mounted on a
motorized inverted stand (Zeiss Axiovert 200M) equipped
with an ArKr laser of wavelength of 488nm is the excitation
source, and Band Pass (BP) filters band limit the emitted
light to 505 − 550nm. The objective lens arrangement is a
Plan-Neofluar with 40X magnification having a Numerical
Aperture of 1.3 and immersed in oil. The pinhole size was
fixed at 67μm

3.2. Biological Specimen

The biological specimen that was chosen for the experiments
is the embryo of a Drosophila melanogaster (see Fig. 1). It
was mounted and tagged with the Green Fluorescence Pro-
tein (GFP). This sample is then used to study the sealing of
the epithelial sheets (Dorsal Closure) midway during the em-
bryogenesis. The images were acquired with a XY pixel size
of 50nm and a Z step size of 170nm, and the size of the vol-
ume imaged is 25.59× 25.59× 2.55μm.
The maximum intensity projection of the observed and re-

stored data is shown in Fig. 1. Since the observation data had
a high noise content, the regularization hyperparamter λ was
initialized to a large value of 0.05. The deconvolution algo-
rithm was stopped when the difference between subsequent
estimates was lower than t = 0.002. The alternate mini-
mization algorithm converged after 40 iterations of the RL-
TV algorithm. The PSF parameters were initialized to 300nm

Fig. 1. Maximum Intensity Projection of the original spec-
imen (top) ( c© Institute of Signaling, Developmental Biol-
ogy & Cancer UMR6543/CNRS/UNSA), and restored image
(bottom) ( c© Ariana-INRIA/I3S). The intensity is scaled to
[0 130] for display and white bar is 2μm.

and 600nm for the radial and the axial case respectively, and
the conjugate-gradient algorithm estimated them to be really
257.9 and 477.9nm. These are much larger than their corre-
sponding theoretically expected values [2] [7]. It was verified
that the proposed algorithm can not only estimate the actual
PSF from the experiments on synthetic data [2], but also pro-
vide much better deconvolution results in comparison to the-
oretical microscope PSF’s (generated using the microscope
settings) [9].
It was noticed that in each slice of the chosen observation
data, there was a significant amount of signal contributions
from the neighboring slices too. A subjective analysis of the
deconvolution results showed that although (see Fig. 2) some
structures and cellular walls are visible at 0μm depth of the
original data, they are really absent at this level and appears
only at 0.34μm in the restoration. The algorithm provides
reasonably good deconvolution results even at depths of more
than 1μm as shown in Fig. 3.
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Axial depth 0μm Axial depth 0.34μm

Fig. 2. The observed image slices (top) ( c© In-
stitute of Signaling, Developmental Biology & Cancer
UMR6543/CNRS/UNSA) and restoration results (bottom)
( c© Ariana-INRIA/I3S) are shown at different depths. The
intensity is scaled to [0 100] for display

4. CONCLUSIONS AND FUTUREWORK

In this paper we have applied the alternate minimization al-
gorithm to the joint estimation of the microscope PSF and
the specimen source distribution. We chose the RL algorithm
for the deconvolution process as it is best suited for the Pois-
son data and TV as the regularization model. A separable 3D
Gaussian model best describes the PSF, and is chosen as the
a priori model. We have shown some experimental results
on real data, and the method gives very good deconvolution
and a PSF estimation closer to the true value [2] [9]. A way
to minimize the deblurring artifacts may be to estimate the
hyperparameter of the regularization model. Future work is
aimed at extending this algorithm to restore spherically aber-
rated observation data and also to improve the representation
of the object to match the physical conditions.
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