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ABSTRACT
X-Ray fluorescence computed tomography (XFCT) aims at

reconstructing fluorescence density from emission data given

the measured X-Ray attenuation. In this paper, inspired by

emission tomography (ECT) reconstruction literature, we

propose and compare different reconstruction methods for

XFCT, based on iteratively inverting the generalized attenu-

ated Radon transform. We compare the different approaches

using simulated and real data as well.

Index Terms— fluorescence tomography, emission to-

mography, attenuation, generalized Radon transform

1. INTRODUCTION

X-Ray fluorescence computed tomography (XFCT) is a rel-

atively new synchrotron based imaging modality that can be

seen as a stimulated emission tomography [2]. In XFCT a

sample is irradiated with high intensity monochromatic syn-

chrotron X-rays with energy greater than the K-shell bind-

ing energy of the elements of interest.This stimulates fluo-

rescence emission, at certain characteristic energies, isotropi-

cally distributed, which are detected by a detector placed par-

allel to the direction of the incident beam [7]. Part of the

emission is absorbed by the sample, so, correction for attenu-

ation is essential to obtain qualitative better results. Mapping

fluorescence emission density distributions could have many

important biomedical applications [9].

A continuous mathematical model for XFCT is given by

the generalized attenuated Radon Transform [6]; that is, if

θ ∈ [0, 2π] and t ∈ [−1, 1] are the parameters defining the

line where emission occurred, and d(t, θ) is the number of

detected emissions coming from some point on that line, we

have that, for the emission density f , defined in the unit disc

Ω:

d(t, θ) = RW f(t, θ) =
∫
x·ξ=t

W (x, θ)f(x)dx

where ξ = (cos θ, sin θ), ξ⊥ = (− sin θ, cos θ) and

W (x, θ) = e−Dλ(x,θ+π)

∫ γ2

γ1

e−Dμ(x,θ+γ)dγ,
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is the weight function and the operator D is defined by

Dμ(x, θ) =
∫ ∞

0

μ
(
x+ qξ⊥

)
dq,

also known as the divergent beam transform. The fluo-

rescence radiation leaves the object within the angle range

[γ1, γ2] at each emission point. Here, μ stands for the fluores-

cence attenuation and λ for the transmission one. Therefore,

in a continuous setting, the mathematical problem consists of

approximately inverting the operator RW , for known λ and

estimated μ.

It is easy to prove that the adjoint operator of RW is de-

fined by

BW d(x) =
∫ 2π

0

W (x, θ)d(x · ξ, θ)dθ

with d = d(t, θ). We call BW the attenuated backprojection

operator. If μ = λ = 0, then RW = R is the classic Radon

Transform andBW = B the standard backprojection operator.

In the next two Sections we present the methods. Section

4 describes the numerical experiments comparing them with

simulated and real data and Section 5 presents some conclu-

sions.

2. ITERATIVE INVERSION OF THE ATTENUATED
TRANSFORM

For given λ and μ = 0, working in emission tomography,

Chang [3] suggested the approximation

fc(x) =
1
2π
R−1{d}(x)

a(x)

as an estimate of the density f , where a = a(x) corresponds

to the correction

a(x) =
1
2π

∫ 2π

0

W (x, θ)dθ.

Independently, Hogan et al [5], after an appropriate dis-

cretization, obtained the same formula as Chang, that is the

one currently being used in fluorescence tomography, when

fluorescence attenuation is known.

Inspired by work by Kunyansky [6] we observed that

Chang-Hogan’s method is nothing but the first iteration of
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an iterative method. Each iteration consists of considering

the inverse Radon Transform R−1, weighted by the factor 1
a ,

very easy to calculate, as an approximation of the inverse of

the attenuated Radon Transform, RW
−1; then a correction

by the residual gives the next iterate. That is, the sequence is

defined by

f (k+1) = f (k) + αk e
(k) (1)

where we have introduced the positive relaxation factor αk

and

e(k) =
R−1

(
d−RW f (k)

)
a

So, the first iteration, with f (0) = 0 and αk = 1 ∀k gives

Chang-Hogan’s correction. αk is a relaxation factor that for

high attenuation values could be used to accelerate the method

when greater than one.

3. THE EM ALGORITHM

Together with the “continuous” inversion, and following [4]

we will compare the results with the standard EM algorithm

for the problem. The EM algorithm is defined by the iteration

(for known {μ, λ}):

f (k+1)(x) = f (k)(x)
BW d(k)(x)
BW e(x)

(2)

where e(t, θ) = 1, ∀(t, θ) ∈ [0, 2π]× [−1, 1], and

d(k)(t, θ) =
d(t, θ)

RW f (k)(t, θ)
.

4. NUMERICAL EXPERIMENTS

We performed several numerical experiments with simulated

and real data, that are summarized next. In order to compare

algorithms (1) and (2), f (0)|Ω = ε was chosen as the initial

point, since the EM algorithm cannot converge starting from

the null image. For fluorescence experiments applied in soft

tissues, the density function f usually has a very low order of

magnitude, say f(x) ≈ 10−6, so, for our numerical experi-

ments, we used ε = 10−7.

Simulated Data
The phantom for these simulations follows Brunetti et al’s
[1], but with a modified geometry, in order to test the algo-

rithms performance for borders identification. The 512x512

pixels images of f and λ are shown in figure 1 In this ex-

ample, μ = 2λ. 150 views (uniform angles in [0, 2π]) and

150 rays for each view were used. Figure 2 shows the recon-

structions by both algorithms using μ �= λ, first and fourth

iterations. Figures 3 and 4 are the reconstructions for the line

x = −0.30 using μ �= λ and μ = λ. Figure 5 shows the

reconstructions with μ = λ for each algorithm after 100 iter-

ations. It is clear the improvement obtained when increasing

the number of iterations. A higher likelihood value is attained

very fast by Alg (1).

0.2 0.4 0.6 1 2 3 4

x 10−5

Fig. 1. Phantom, 512x512 pixels. Left: Transmission attenu-

ation. Right: Density emission.

1 2 3 4

x 10−5

1 2 3

x 10−5

Fig. 2. Reconstructions with μ �= λ. Left (top): one iteration

of 1. Left (bottom): four iterations of 1. Right: same for

algorithm 2.

Real Data

We performed reconstructions from experimental data from

samples of breast tissue to observe details of ductal carci-

noma structures. This was done by reconstructing the distri-

butions of Fe, Cu and Zn. The data was obtained from a sys-

tem that was set up in a high-resolution diffraction beam line

at the Brazilian Synchrotron Light Source (LNLS) in Camp-

inas, São Paulo. The fluorescence attenuation map μ was not

avalaible a priori, so μ = λ was used as an approximation.

The results are shown in Figures 6,7 and 8. As for the sim-

ulated data, that is, with known geometry, constrast clearly

increases with the number of iterations.

761



−1 −0.5 0 0.5 1
0

2

4

6
x 10−5 (a)

−1 −0.5 0 0.5 1
0

1

2

3

4

5
x 10−5 (b)

2 3 4 5 6 7 8 9 10
−1.85

−1.8

−1.75

−1.7
(c)

Fig. 3. Graphics along the line x = −0.30 for μ �= λ for the

phantom. The continuous line represents the phantom, the

dotted line ten iterations, the pointed line one iteration. (a)

For Alg (1) (b) For Alg (2) (c) Loglikelihood function for the

ten first iterations. Alg (1); circles, Alg (2): squares, Ideal

values: diamonds.
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Fig. 4. Same as Figure 3 for μ = λ.
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Fig. 5. Reconstructions for μ = λ after 100 iterations for the

discontinuous phantom. Top: Alg (2) vs. original; bottom:

Alg (1) vs original.
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Fig. 6. Reconstruction of Fe density using μ = λ. The first

column represents iterations one and fifty for Alg(1), the sec-

ond for Alg(2).
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Fig. 7. Same as Figure 6 for Cu.
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Fig. 8. Same as Figure 6 for Zn.

5. CONCLUSIONS

In the current XFCT literature the main inversion method has

been Hogan et al’s. In this article we show that the method is

just the first iterate of a more general iterative method based

on the weighted inversion of the Radon Transform. Our ex-

periments show that the quality of the images could be very

much improved when several iterations are used. From our

simulations and experiments with real data, we can see that

this improvement is also valid when the unknown fluores-

cence attenuation is estimated by the transmission attenuation

map. We are working now in two directions: the fast retrieval

of the fluorescence attenuation from the emission data only

and the reconstruction from smaller data sets, aiming at re-

ducing the experimental time. Also, we are comparing our

approach with the one proposed in [7], using a phantom with

known geometry to verify the reconstruction accuracy.

6. ACKNOWLEDGMENTS

We are very gratefull for the support of the researchers of the

Nuclear Instrumentation Laboratory (Federal University of

Rio de Janeiro), Brazil, and the Brazilian Synchrotron Light

Laboratory (LNLS).

7. REFERENCES

[1] A.Brunetti, B.Golosio, Software for X-ray fluorescence
and scattering tomographic reconstruction, Computer

Physics Communications, vol.141, pp.412-425, 2001.

[2] R.Cesareo, S.Mascarenhas, A new tomographic device
based on the detection of fluorescent x-rays, Nucl. In-

strum. Methods A, 277, pp. 667-672, 1989.

[3] L.T.Chang, A Method for Attenuation Correction in Ra-
dionuclide Computed Tomography, IEEE Trans. Nucl.

Science, NS-25, No.1, pp.638-648, 1978.

[4] G.Friedmann Rust, J.Weigelt, X-ray fluorescent com-
puter tomography with synchrotron radiation, IEEE

Trans. Nucl. Science, vol.45, No. 1, 1998.

[5] J.P.Hogan, R.A.Gonsalves, A.S.Krieger, Fluorescent
Computer tomography: a model for correction of X-Ray
absorption, IEEE Trans. Nucl. Science, vol 38, No.6,

1991.

[6] L.A.Kunyansky, Generalized and attenuated Radon
transforms: restorative approach to the numerical in-
version, Inverse Problems, 8, pp. 809-819, 1992.

[7] P.La Rivière, P.Vargas, Monotonic Penalized-likelihood
image reconstruction for X-ray fluorescence computed
tomography, IEEE Trans. Med. Imaging, vol.25, No.9,

2006.

[8] P.La Rivière, Approximate analytic reconstruc-
tion in X-ray fluorescence computed tomography,

Phys.Med.Biol., 49, pp.2391-2406, 2004.

[9] H.S.Rocha, G.R.Pereira, M.J.Anjos, P.Faria,
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