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ABSTRACT 

 

We report the first 3D maps of genetic effects on brain fiber 

complexity. We analyzed HARDI brain imaging data from 90 

young adult twins using an information-theoretic measure, the 

Jensen-Shannon divergence (JSD), to gauge the regional 

complexity of the white matter fiber orientation distribution 

functions (ODF). HARDI data were fluidly registered using 

Karcher means and ODF square-roots for interpol ation; each 

subject’s JSD map was computed from the spatial coherence of the 

ODFs in each voxel’s neighborhood. We evaluated the genetic 

influences on generalized fiber anisotropy (GFA) and complexity 

(JSD) using structural equation models (SEM). At each voxel, 

genetic and environmental components of data variation were 

estimated, and their goodness of fit tested by permutation. Color-

coded maps revealed that the optimal models varied for different 

brain regions. Fiber complexity was predominantly under genetic 

control, and was higher in more highly anisotropic regions. These 

methods show promise for discovering factors affecting fiber 

connectivity in the brain. 

 

Index Terms— High angular resolution diffusion imaging, DTI 

registration, Jensen-Shannon divergence, structural equation 

model, twins 

 

1. INTRODUCTION 

 

High angular resolution diffusion imaging (HARDI) reveals more 

information on water diffusion and fiber connectivity than 

conventional diffusion tensor imaging (DTI) because it applies 

many, usually 30-100, diffusion-encoded gradients to resolve 

diffusion profiles at higher angular resolution. This advantage, 

however, becomes a barrier to data mining on HARDI: for a single 

subject the HARDI dataset is four-dimensional, with one 3D 

volume of data collected for each gradient direction. This makes 

intersubject registration and other group analyses of HARDI data 

very difficult. 

    In this paper we register the HARDI data of 90 twin subjects by 

applying tensor-based fluid registration to their corresponding DTI 

[1]. We also propose a new local measure of fiber complexity 

based on information theory, the Jensen-Shannon divergence (JSD) 

[2] to examine the complexity of the local angular structure of 

diffusion. Our results show that this is powerful for identifying 

regional diffusion complexity in a large HARDI study. 

                                                
 This work was funded in part by NIH grant R01 HD050735. 

    In neuroscience research, twin studies are informative for 

understanding the genetic control of brain structure and function. 

Several aspects of brain morphometry are under strong genetic 

control, such as cortical thickness [3], and regional gray and white 

matter (WM) volumes [4]. However, there are no known maps of 

genetic influences on diffusion profiles or fiber complexity in the 

brain. Only one study has examined genetic influences on DTI, and 

found that that the proportion of genetic and environmental control 

varied regionally, for the fractional anisotropy of the corpus 

callosum [5]. Here we propose a new method for quantitative 

genetic modeling of HARDI data, combining structural equation 

models (SEM) and permutation methods to plot the 3D profile of 

genetic and environmental effects. To our knowledge, these are the 

first 3D maps of genetic influences on DTI. 

 

2. METHODS 

 

2.1. Subject description and image acquisition 

 

The HARDI data were acquired from 22 pairs of monozygotic 

(MZ; 20 males/24 females; age = 25.1±1.5 years) and 23 pairs of 

dizygotic twins (DZ; all were same-sex pairs; 20 males/26 females; 

age = 23.5±2.2 years) on a 4T Bruker Medspec MRI scanner using 

an optimized diffusion tensor sequence [6]. Imaging parameters 

were: 21 axial slices (5 mm thick), FOV = 23 cm, TR/TE 

6090/91.7 ms, 0.5 mm gap, with a 128 100 acquisition matrix. 

Thirty images were acquired: three scans with no diffusion 

sensitization (i.e., T2-weighted images) and 27 diffusion-

weighted images in which the gradient directions were evenly 

distributed on the hemisphere [6]. The reconstruction matrix was 

128 128, yielding a 1.8x1.8 mm
2
 in-plane resolution. The total 

scan time was 3.05 minutes. 

 

2.2. DTI registration 

 

For each subject, DT images (denoted by Dij, 1  i, j 3) were 

computed from the HARDI signals using MedINRIA software 

(http://www-sop.inria.fr/asclepios/software/MedINRIA). One 

diagonal component image (D11) was manually stripped of 

nonbrain tissues, yielding a binary brain extraction mask 

(cerebellum included). The masked image was then registered to 

the ICBM53 average brain template with a 12-parameter linear 

transformation using the software FLIRT [7], and resampled to 

isotropic voxel resolution (dimension: 128 128 93 voxels, 

resolution: 1.7 1.7 1.7 mm
3
). The resulting transformation 

parameters were used to rotationally reorient the tensor at each 

voxel [8], and then affine align the tensor-valued images based on 
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trilinear interpolation of the log-transformed tensors [9]. All affine-

registered DT images were then registered to a randomly selected 

subject's image (a MZ subject), using an inverse-consistent fluid 

registration algorithm that minimizes the symmetrized Kullback-

Leibler divergence (sKL-divergence) of the two tensor-valued 

images [1].  

 

2.3. HARDI processing and registration 

 

Orientation distribution functions (ODF) for water diffusion were 

computed voxelwise from the HARDI signals using the Funk-

Radon Transform (FRT) [10]. We used Descoteaux’s method [11], 

which first expands the HARDI signals as a spherical harmonic 

(SH) series, simplifying the FRT to a linear matrix operation on the 

coefficients. To estimate the SH coefficients, we set the order of 

the SH series to 4, and added a Laplacian smoothing regularizer to 

reduce the noise level, and also a Laplacian sharpening regularizer 

to help detect the peaks of the ODF, as detailed in [11]. The 

estimated ODF was normalized to unit mass, creating a diffusion 

probability density function (PDF) parameterized by spherical 

angle.  

    Images of the diffusion ODFs were registered to the target 

subject by applying the corresponding DTI mapping (both affine 

and fluid mappings) in the previous section. To keep the direction 

of the diffusion ODFs oriented with the direction of the underlying 

fibers, ODFs were reoriented using the Preservation of Principal 

Direction (PPD) method [8], where the principal direction of the 

ODF was determined based on principal component analysis of the 

ODF [12]. A generalized fractional anisotropy (GFA) map was 

constructed from the registered ODF  [10]: 

 

GFA = n (ui)( )
2

i=1

n
(n 1) (ui)

2

i=1

n 

  
 

  
.       (1) 

 

Here ui, 1  i  n, are n gradient directions, and  is the mean of 

the ODF with respect to spherical angle. 

    Spatial interpolation of HARDI ODFs is a new issue, and is 

required when the registration mapping falls on non-lattice points. 

We addressed this by taking the square root of the ODF: the 

Riemannian manifold for the square root of a PDF is isomorphic to 

a unit sphere and there are closed form expressions defining the 

geodesic distance, exponential and inverse exponential mappings 

[13]. The interpolated square-rooted ODF (sqrt-ODF)  at point (x, 

y, z) was then constructed by finding the weighted Karcher mean 

of its 8 diagonal neighbors i in 3D at lattice points (xi, yi, zi), 

which minimizes the square sum of the geodesic distance d: 
 

= argmin wid( , i)
2

i=1
8 .        (2) 

 

Here wi is the trilinear interpolation weight defined as 

wi = 1 x xi( ) 1 y yi( ) 1 z zi( ) . The weighted Karcher 

mean  was computed using a gradient descent approach as 

detailed in [13]. 

 

2.4. Measuring regional complexity of diffusion 

 

We defined the regional complexity of diffusion using the 

generalized Jensen-Shannon divergence (JSD) [2]. JSD measures 

the dissimilarity of n probability distributions, given by 
 

JSDw (p1,...,pn ) = H wipii=1
n( ) wiH(pi)i=1

n .      (3) 

 

Here pi = pij ,1 j k pij =1j=1

k{ } , and 

w = wi ,1 i n wi =1i=1

n{ } . H(•) is the Shannon entropy, 

defined as H(p) = pj logj=1

k pj . JSDw(p1,…,pn) = 0 if and only if 

all p1,…, pn are equal. The complexity of diffusion at voxel x was 

then defined as the JSD for the ODF at x and its contiguous 26 

ODFs. We adopted an equal weight of 1/n for simplicity. 

  

2.5. Statistical analysis of structural models for twins 

 

For analyzing genetic and environmental correlations in twins, the 

use of structural equation modeling (SEM) is widely accepted [4, 

14]. SEM evaluates contributions of additive genetic (A), shared 

environmental (C) and random environmental (E) components to 

the covariances of the observed variables (y) for MZ and DZ twins, 

according to the following model: 
 

y j = aA j + cC j + eE j ,         (4) 

 

where j = 1 or 2 for the first or second twin in the same pair. Since 

A, C, and E are unobservable variables, their weights  = (a, c, e) 

were estimated by comparing the covariance matrix implied by the 

model (denoted by ( )) and the sample covariance matrix of the 

observed variables (denoted by S), using maximum-likelihood 

fitting: 
 

FML , = log ( ) + trace( 1( )S) logS p,         (5) 

 

where p is the number of observed variables, and p = 2. Under the 

null hypothesis that the population covariance matrix of the 

observed variables equals ( ), and the n-sample data y are 

multivariate normal, TML,   = (n 1)FML,  follows a chi-squared 

distribution with p(p+1) t degrees of freedom, where t is the 

number of free model parameters. Acceptance of the null 

hypothesis (p > 0.05) indicates a good fit for the model. 

    Parameter fitting based on the above chi-squared distribution, 

however, may be biased if the sample data are non-normal.  To 

make SEM free of distributional assumptions, we used permutation 

methods to determine the goodness of fit [15]. At each voxel, the 

GFA or JSD of the diffusion ODFs served as the observed 

variable, with the subject’s age regressed out. We computed TML,  

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [16] 

to minimize FML in (5) in the original sample, as well as in 

permuted samples in which the twin pairs’ MZ or DZ labels were 

randomly shuffled. The number of permutations was set to 2000. 

On each permutation relabeling, four null hypotheses with different 

 were evaluated, for fitting the E:  = (e), CE:  = (c, e), AE:  = 

(a, e), and ACE:  = (a, c, e) models, and the p-values, pE, pCE, pAE, 

and pACE, were determined separately by comparing TML,  in the 

true labeling to the permutation distribution. We noticed that, since 

the permutation distribution of the chi-squared statistic TML,  might 

be different from its original distribution, rescaling of the sample 

data using the Bollen-Stine transformation was necessary for each 

null hypothesis [15]: 
 

Z = YS 1/ 2 1/ 2( ).           (6) 
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Here Y is an n 2 matrix of the observed variables for the n pairs of 

twins. The square root of a matrix was computed from its Cholesky 

factorization. The rows of Z instead of Y were then permuted. 

    The four permutation p-values, pE, pCE, pAE, and pACE, were 

compared at each voxel and the voxel was assigned to one of E, 

CE, AE, and ACE models if the p-value for that model was greater 

than the other three and also greater than 0.05. We used a color-

coded map to visualize the optimal model fitted at each voxel, with 

E coded as blue, CE as green, AE as red, and ACE as yellow. For 

better visualization, we defined “model clusters”, defined as sets of 

connected (26-neighborhood) voxels of the same model, for each 

of the four models, and only displayed clusters that contained more 

than 10,000 voxels. 

 

3. RESULTS 

 

Fig. 1 displays the spatial distribution of the average JSD 

(averaged across all 90 subjects). The value of the average JSD 

increases with GFA, which indicates that JSD is sensitive to the 

complexity of ODFs in major white matter fibers with high 

diffusion anisotropy, especially in regions where the anisotropy 

values vary over a small spatial neighborhood. In regions of low 

anisotropy, the ODF shape is closer to a unit sphere so those ODFs 

are more alike. This property of JSD is useful because in 

DTI/HARDI studies, researchers are typically more interested in 

the diffusion properties of highly anisotropic brain regions, where 

fiber structures are highly resolved. 

    Fig. 2 and 3 show the covariance structure fitting for maps of 

GFA and JSD in the 90 twins. When the AE model fits best, the 

variation in GFA or JSD values is more attributable to genetic 

influences, i.e., the covariance structures of GFA or JSD at that 

voxel are best accounted for by additive genetic (added effect of 

genes) and random environmental effects (random experimental 

error is also lumped into the E term). When the CE model fits best, 

the variation in the observed measures is more due to 

environmental influences shared by twins reared in the same 

family [14]. The full ACE model, in which all terms fit at once, 

could not be fitted for either GFA or JSD. For both GFA and JSD 

measures, more voxels had AE as the best-fitting model than CE or 

any other model, indicating that diffusion properties are more 

genetically influenced than environmentally influenced, in most 

brain regions.  

    Our results also suggested that there may be some hemispheric 

asymmetry in model fitting, e.g. in the cingulum. Variation in GFA 

or JSD in the left cingulum (Fig. 2a, circled) is more explained by 

the shared environment (CE), while the right cingulum more by the 

additive genetic effect (AE). In our previous twin study, we also 

found asymmetry in the degree of genetic control for the thickness 

of the language-related cortex [3]. Taken together, this suggests 

that genetic influences on different brain regions may be 

asymmetric; this hypothesis will be tested formally and verified on 

a larger sample, by entering hemisphere as a covariate of interest in 

a more complex structural equation model. 

 

4. CONCLUSION 

 

This study unites four key mathematical concepts to provide a 

processing pipeline for population studies of HARDI; we used the 

pipeline to create the first maps of genetic influences on fiber 

architecture in the living brain. HARDI is a special type of multi-

valued medical image, with a spherical function of diffusion-

sensitive signals at each voxel. To analyze this high-dimensional 

data, we used fluid image registration to align data across subjects, 

driven by a tensor-valued information theory metric (sKL-

divergence). This ensured good anatomical fiber correspondence 

across subjects before comparing and integrating data across a 

population. To preserve angular detail, we used a spectral 

implementation of the Funk-Radon transform, ODF sharpening, 

ODF square-root transformation, and Karcher means, to convect 

the signals through the fluid mapping and resample them in 

appropriate Riemannian manifolds. Third, we computed maps 

involving new measures of fiber integrity (GFA) and fiber spatial 

coherence (JSD), that exploit the full angular detail obtainable with 

HARDI. Fourth, we estimated quantitative genetic models by 

fitting a standard ACE design at each voxel, but developing a new 

permutation method based on the Bollen-Stine transformation to 

avoid making the strong assumption that the model residuals were 

chi-squared distributed random fields.       

       Our neuroscientific results suggested that: (1) fiber measures 

are highly genetically controlled, especially in regions of high 

diffusion anisotropy, (2) there are also environmental effects on 

fiber morphology, in different brain regions, with possible 

hemispheric asymmetries; and (3) the genetic fit is strong enough 

that future studies may be able to detect individual genes 

contributing to fiber architecture, using these measures and 

algorithms to guide the search. 
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Fig. 1. (a) The color-coded map shows that the JSD, a measure of 

fiber complexity, is greater in regions of high diffusion anisotropy 

(e.g., the corpus callosum), especially at interfaces between high 

and low anisotropy. This trend becomes clear when plotting JSD 

against the GFA in (b). 
 

 

 

Fig. 2. (a) The color-coded map shows which model fits best for 

the covariance matrices of GFA, a measure of fiber integrity, at 

each voxel. Voxels with covariance matrices of GFA in MZ and 

DZ twins where the E model fitted best are coded as blue, CE is 

coded as green, and AE is coded as red. Major fiber structures with 

high GFA values, such as the corpus callosum, cingulum, and 

internal capsules, are optimally fitted using the AE and the CE 

models. There is a visible asymmetry in model fitting in the 

cingulum fibers, where the right cingulum is better fitted by the AE 

model (yellow circle), while the left cingulum is better fitted by the 

CE model. (b) A histogram shows the number of voxels where the 

best-fitting model is E, CE, or AE (only those clusters composed of 

more than 10,000 voxels were included). Plotting this against the 

GFA shows that the AE and the CE models explain the covariance 

structures of GFA in highly anisotropic regions, while the E model 

fits best in low-anisotropy regions. As genetics (rather than 

environment) is the predominant influence on these fiber measures, 

specific candidate genes affecting fiber integrity and connectivity 

may be discoverable in larger samples.  
 

 
 

Fig. 3. (a) The color-coded map shows which genetic models best 

explain variations in fiber complexity (JSD), across 90 individuals. 

Color coding is the same as in Fig. 2. As with GFA (Fig. 2), there 

is a visually apparent asymmetry for the cingulum fibers, showing 

that voxels assigned to the AE model are more prevalent in the 

right cingulum (circled in yellow), but voxels where the CE model 

is optimal are found more in the left cingulum. (b) The histogram 

shows the distribution of the voxel numbers for different models, 

considering only clusters of size greater than 10,000 voxels. For 

each JSD value, voxels assigned to the AE model (red) outnumber 

those assigned to the CE model, and there is no large enough 

cluster (> 10,000 voxels) for the E model.  
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