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ABSTRACT

Imaging speed is crucial to dynamic Magnetic Resonance

Imaging (dMRI) where multiple images must be obtained in

a single examination. To accelerate imaging speed, dMRI

can be performed with parallel MRI (pMRI) technique by

sparsely sampling the k-space of each time frame. However,

pMRI reconstruction requires precise estimation of sensitivity

maps of receiving coils, which is difficult to obtain with the

existing methods. Imperfect estimation of sensitivity maps

can dramatically increase artifacts in the reconstructed im-

age. This paper proposes an adaptive sensitivity estimation

method to capture the temporal variation of k-space frames

and to estimate the unacquired dataset. The estimated dataset

is used to create the full k-space for each frame, from which

the time varying sensitivity maps are estimated. Experi-

ments on real dynamic-parallel MRI data demonstrate that

the proposed method significantly improves the quality of the

reconstructed MR images.

Index Terms— Dynamic MRI, parallel MRI, autoregres-

sive model, data estimation.

1. INTRODUCTION

Dynamic Magnetic Resonance Imaging (dMRI) is a widely

accepted method in clinical diagnosis and biomedical re-

search. It is used to monitor the function of the patients’

organs by sequentially acquiring several images in one par-

ticular body area. Similar to conventional MRI, dMRI also

suffers from the slow imaging speed problem [3]. To ac-

celerate imaging speed, dMRI is often performed with the

parallel MRI (pMRI) technique by sparsely sampling the k-

space of each time frame. In order to reconstruct the desired

image in pMRI, the coil sensitivity maps are required to un-

wrap the aliased coil images generated by sparsely sampled

k-spaces. Three current methods to acquire coil sensitivity

maps in dMRI are : the pre-scanning, temporal average and

autocalibration.

The authors wish to thank Dr. Peter Kellman, NHLBI, National Insti-

tutes of Health, USA, for providing the dataset.

Pre-scanning [1] method performs an extra scanning at

Nyquist rate on a phantom before or after the dynamic imag-

ing process. Although the pre-scanning method is simple and

easy to perform, it has two major drawbacks. Firstly, the sen-

sitivity maps are partially determined by dielectric properties,

e.g, susceptibility of the subject to be scanned. Significant

changes may occur between the dielectric properties of the

phantom used in the extra scan and those of a human body.

Secondly, the motion during the dynamic imaging process

may change the characteristics of the coil. The temporal av-

erage (sliding window) method, [3], [4], uses the sum of ev-

ery R interleaved undersampled k-spaces to build a new com-

plete k-space, where R is the reduction/acceleration factor.

The temporal average method is very efficient and effective

in low reduction factor case. However, when a major varia-

tion of cardiac position occurs during the respiratory cycle or

when a relatively large reduction factor is used, its effective-

ness is limited. The loss of information and the inaccuracy

of the sensitivity map is proportional to the length of the in-

terval involved in the temporal averaging. In other words,

the more frames are used for averaging, the worse the result

will be. Furthermore, when the reduction factor R is greater

than the number of images N obtained in the imaging process

(R > N ), it is impossible to perform the temporal averaging.

In order to cover the central low frequency area, the autocali-

bration method proposed in [2], integrates the coil sensitivity

into the imaging process by including few extra ACS (auto-

calibration signal) lines. 2D-Fourier Transform of the ACS

lines gives a sensitivity-scaled low-resolution and alias-free

image. However, the major drawback of this method is the

trade-off between the speed of the imaging process and the

accuracy of the sensitivity map produced.

In the previous literatures [5],[6], the idea of modeling the

variation of the dynamic MRI data over time was exploited. In

this paper, we fit multiple AR models to the acquired k-t space

data to capture the variation of the time series and to estimate

the unacquired Phase-Encoding (PE) lines. Combining the

estimated data with the acquired ACS lines, the level of un-

certainty in the estimated sensitivity map can be significantly

reduced. The main benefit of this approach is the ability to
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Fig. 1. Sampling Pattern. The dots and circles represent the

acquired and skipped PE lines, respectively. Each column

represents one time frame.

track the variation of the sensitivity map over time and to pro-

vide an updated sensitivity map for each time frame. This

time-variation may be caused by respiratory or other physio-

logical motions. Moreover, our approach reduces the exami-

nation time by eliminating preliminary training stage.

2. THEORY

2.1. K-T Space Modeling

Fig.1 illustrates the data acquisition scheme used in this pa-

per. According to the proposed sampling pattern, a uniform

non-interleaved undersampled k-space is obtained for each

dynamic image frame. A complete time series sx,y,l(n) is

acquired at (x, y)th pixel of each k-space along the time axis,

where n is the discrete time index, x and y are the phase-

encoded and frequency-encoded indecies respectively (x =
0, R, 2R, · · · , (M − 1)R, y = 0, 1, · · · , Nfe,M = Npe

R ),

and l is the coil index. In order to learn the temporal prop-

erties of the acquired time series, we fit a statistical model,

such as AutoRegressive (AR) model to the series sx,y,l(n) at

each (x, y, l) position.

Mathematically, learning the properties of the k-space

data is a univariate signal description problem, where the

observed signal sx,y,l(n) is a time function. A pth-order

autoregression model, denoted by AR(p), describes a time-

varying signal with the following difference equation:

s(n) + a(1)s(n− 1) + · · ·+ a(p)s(n− p) = ε(n) (1)

where p is the maximum time lag between the present and

previous data samples s(n) and s(n− i) respectively, ε(n) is

the residual estimated error with the mean μ and variance σ2.

The AR parameter is denoted by ai. The spatial index (x,y)

and the coil index l are omitted for simplicity.

Given several observations of the discrete time process

data s(n), parameters of the model can be calculated by mini-

mizing the total energy of the residual Er =
∑p

n=1 ε2(n). In

[7], Burg introduced a preferable estimation method for the

AR process. In Burg’s algorithm, the residual of the AR pro-

cess is further expanded to forward and backward residuals

with the following definitions:

fm(n) = fm−1(n) + k̂mbm−1(n− 1), (2)

bm(n) = bm−1(n− 1) + k̂mfm−1(n), (3)

n = K + 1, · · · , N

where fm(n) and bm(n) are the forward and backward pre-

diction errors and k̂m are the reflection coefficients at the m-

th stage. The initial conditions for (2) and (3) are f0(n) =
b0(n) = s(n). The reflection coefficient is iteratively calcu-

lated at each stage by minimizing (least squares) the sum of

squares of the forward and backward residuals. Taking the

partial derivative with respect to the reflection coefficient and

equating to zero yields the reflection coefficient at the m-th

stage,

k̂K = −2
∑N

n=K+1[fK−1(n)bK−1(n− 1)]∑N
n=K+1[f

2
K−1(n) + b2

K−1(n− 1)]
(4)

We calculate the AR parameters recursively at each stage

from the reflection coefficients km through Levinson-Durbin

algorithm [7]. The algorithm starts with the initial condition

a0(0) = 1 and

am(n) = am−1(n− 1) + kmam − 1(m− n), (5)

n = 1, 2, · · · ,m− 1

to obtain the parameters at the m-th stage. The algorithm re-

peats for m = 1, 2, · · · , p. Finally, the AR parameters obtained

at last stage ap(n) give the desired model parameters ai in (1).

Next we consider the model order p. An insufficient

model order will lead to a fast die out of the estimated data,

while over-modeling may result in an unstable model. It was

suggested in [7] that the optimized order for a finite-sample

process is N/10, where N is the length of the time series.

However, our experiment shows that a relatively low order

model achieves the equivalent performance of a higher order

model. For computation simplicity, lower order model is

preferred.

2.2. Data Filling and AR Model Based Sensitivity Map
Estimation

The k-space data are samples of continuous Fourier trans-

form of the object image. Hence, it is assumed that the time-

varying functions are similar for adjacent PE lines. With the
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AR model learnt from the full-set k-space data series, the k-

space data in adjacent lines can be estimated as follows:

s̃x+r(n) = −
p∑

i=1

ax(i)sx+r(n− i) (6)

where n = 1, 2, · · · , N , r = 1, 2, · · · , R− 1, x = 0, R, 2R,
· · · , (M −1)R and s̃x+r(n) is the linear prediction based the

learnt AR model from the x-th phase-encoding line. The ini-

tial condition sx+r(0) is from the reference frame obtained

at the beginning of the examination, where x is the index of

the PE lines in the complete k-spaces. In order to create a

complete k-space at all time frames of each coil and to fill the

blanks between sx(n) and sx+R(n), the s̃x+r(n) estimated

from (6) are used. These composite k-spaces mixed with

both acquired data and estimated data are ready for gener-

ating sensitivity-weighted high-resolution and alias-free coil

images at each time frame. The sensitivity maps for each time

frame are obtained by dividing the coil images by their RSoS

image. In the following, the above the estimation method of

the sensitivity map will be called the AR method.

3. EXPERIMENTAL RESULTS

This section presents the experimental results obtained from

a surface coil array dataset. An eight-channel dataset was ac-

quired on a healthy male volunteer in a Siemens 1.5T Avanto

scanner with eight-element surface array (Nova Medical,

Wilmington, MA). This array had four anterior coils plus

four posterior coils.

The dataset was a fully-sampled k-t space. Each frame

had 108 phase-encoded and 384 frequency-encoded lines re-

spectively. In order to apply various reduction factors (R),

all k-space data were zero-padded to 120 lines in the phase-

encoded direction. In all experiments, certain phase-encoded

lines were removed to simulate the skipped phase-encoded

lines in the real parallel imaging scheme. To avoid the ef-

fect of different reconstruction errors caused by various re-

construction algorithms, the SENSE reconstruction scheme

was adopted for all methods after the sensitivity maps were

estimated. The entire reconstruction process was conducted

using MATLAB software.

Three coil calibration methods (pre-scanning, sliding win-

dow and autocalibration methods) were compared with the

AR model based method at different R. In each cardiac phase,

a true image was reconstructed with the ”perfect” sensitivity

maps, which were generated by the full k-space. For a fair

comparison, the efficient reduction factor (Reff ) was taken

into account in all methods. We define Reff as the ratio of

the number of acquired PE lines and the number of total PE

lines. For AR and ACS methods, additional central PE lines

were kept (a certain number of the these ACS lines overlapped

with undersampled k-space PE lines). For the pre-scanning

method, the first cardiac frame was fully acquired to simu-

late the extra scanning usually performed before or after the

dynamic imaging process. For the sliding window method, a

sequentially interleaved k-t space sampling scheme was used

and the first R frames were summed together to compose a

”complete” k space, from which temporal averaged sensitiv-

ity maps were extracted. Then the (R+1)th frame along with

the previous R− 1 frames form the next ”complete” k space,

which will be used to reconstruct the (R + 1)th frame and so

on.

We present several sequences of reconstructed images us-

ing sensitivity maps obtained by different sensitivity map esti-

mation methods. The same reduction factor (R = 4) was ap-

plied to each of the reconstruction processes and Fig.2 shows

four individual frames in a cardiac cycle. In the bottom row

of Fig.2, a true image generated by the most accurate sen-

sitivity map was provided for each frame. Compared to the

true image, both the pre-scanning and autocalibration meth-

ods gave images with strongly visible artifacts, even though

50 ACS lines were used to generate the sensitivity map in the

latter. The sliding-window method produced less noise-like

effect than the previous two methods; however, because of

the inherent drawbacks of the sliding window method, some

edge-like artifacts can be observed due to the low temporal

resolution of averaged sensitivity maps. Our AR method with

only 15 ACS lines provides superior results with less artifacts

than all other methods.

Fig. 2. Four snapshots of the reconstructed image sequences

from various sensitivity map estimation methods.

To further verify the effectiveness of the AR method, a

critical reduction factor (R = 8), was applied to the same

8-channel dataset. In this experiment, pre-scanning and au-

tocalibration methods produced unacceptable reconstruction

results with significant artifacts. This is because the high gain

of the inverse sensitivity map matrix, due to the very large

condition number, magnifies the error caused by the differ-

ence between the estimated map and the true sensitivity map.

Only the sliding-window and our AR method gives accept-

1017



able reconstructions. As observed from Fig.3, both methods

generate reconstruction errors, however, the level of the error

is quite different. In Fig.3, the sliding window reconstruction

not only has significant error at the border area, but also pos-

sesses serious edge-like artifacts in the central region, where

the heart locates for both the systole and diastole cases. The

error was considerably reduced in AR reconstructions. The

AR reconstruction errors are mainly visible in the central re-

gion, the most dynamic region during the cardiac cycle. The

high-frequency components of k-t space that control the edge

of the object were not accurately modeled due to the limited

dataset length and this fact accounts for the above observa-

tion.

Fig. 3. Comparison of the AR method and sliding window

method at R = 8 (Reff =4.3) An error and a true image are ac-

companied with each image to demonstrate the performance

of the two methods.

In order to quantify the performance of the two methods,

the normalized reconstruction error energy (NREP) is com-

pared in Fig.4. NREP of each cardiac phase is calculated from

enml =

[∑Npe

i=1

∑Nfe

j=1 ΔIi,j∑Npe

i=1

∑Nfe

j=1 Ii,j

]2

(7)

where Npe and Nfe are the total numbers of phase-encoded

and frequency-encoded lines respectively. ΔIi,j is the abso-

lute reconstruction error and Ii,j is the pixel intensity of the

reference image at pixel (i, j). As expected, our AR method

gives much lower NREP at all time frames.

4. CONCLUSION

By using the AutoRegression (AR) model, we have presented

a novel sensitivity map estimation scheme to increase the es-

timation accuracy. The experiments on real dynamic-parallel
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Fig. 4. Normalized error energy at all time frames with re-

duction factor eight (R = 8).

MRI data indicate that the estimation accuracy can be im-

proved by exploiting the temporal correlation existing in k −
t space data, which in turn improves the quality of recon-

structed images with fewer artifacts.
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