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ABSTRACT 

 Accurate estimation of channel sensitivity functions is still 
a challenging problem in parallel imaging. JSENSE has 
recently been proposed to improve the accuracy of 
sensitivity estimation using the self calibration data. It 
regards both the coil sensitivities and the desired images as 
unknowns to be solved for jointly. The existing algorithm 
for the underlying nonlinear optimization problem requires 
an accurate initial value, which needs considerable number 
of self calibration data. In this paper, we use the variable 
projection method to find the optimal solution. The method 
is known to be able to give an optimal solution, and our 
implementation has a linear convergence rate. The 
performance of the proposed method is evaluated using a set 
of in vivo experiment data. 

Index Terms—SENSE, self calibration, separable least 
squares, variable projection

1. INTRODUCTION 

Parallel magnetic resonance imaging (pMRI), as a fast 
imaging method, uses an array of RF receiver surface coils 
to acquire multiple sets of under-sampled k-space data 
simultaneously. Over the past few years, a number of pMRI 
techniques have been proposed for reconstructing a 
complete MR image from these under-sampled data in 
either k-space or the image-domain. Among these methods, 
some do not need the explicit functions of coil sensitivity, 
such as PILS [1], AUTO-SMASH [2], VD-AUTO-SMASH 
[3], and GRAPPA [4], while others require the functions to 
be given exactly, such as SMASH [5], SENSE [6], and 
SPACE-RIP [7]. For the methods in the latter category, the 
sensitivity estimation method is as important as the 
reconstruction algorithm [8].   

Unfortunately, the existing techniques for 
determination of sensitivity functions are not yet satisfying. 
The most common technique has been to derive sensitivities 
directly from a set of reference images obtained in a 
separate calibration scan before or after the accelerated 
scans. This calibration scan can prolong total imaging time, 
partially counteracting the benefits of reduced acquisition 
time associated with pMRI. Another practical problem with 
this technique is that misregistrations or inconsistencies 

between the calibration scan and the accelerated scan result 
in artifacts in the reconstructed images, which is a major 
concern in dynamic imaging applications. Adaptive 
sensitivity estimation [9,10] have been proposed for these 
applications. Based solely on the data from accelerated 
scans, the method uses UNFOLD [11] to generate low-
temporal-resolution, aliasing-free reference images for 
sensitivity estimation. However, UNFOLD is limited to 
dynamic applications where at least half of the field-of-view 
remains static over time. A more general method is the self-
calibrating technique, which also eliminates a separate 
calibration scan but acquires a variable density (VD) k-
space data during the accelerated scan [8]. The VD 
acquisition includes a small number of fully-sampled lines 
at the center of k-space, known as auto-calibration signal 
(ACS) lines, in addition to the down-sampled lines at outer 
k-space. These central k-space lines after Fourier 
transformation produce low-resolution in vivo reference 
images. To derive the sensitivities, these low-resolution 
reference images are divided by their sum-of-squares 
combination [8,12].  If a small number of ACS lines are 
used, the truncation errors will be present in all sensitivity 
functions, which become serious especially at locations 
where the object transverse magnetization has high spatial 
frequency components. Consequently, the pMRI 
reconstruction suffers from aliasing artifacts. Therefore, to 
improve the sensitivity accuracy with a small number of 
ACS data is crucial for pMRI techniques to achieve a high 
acceleration.

JSENSE [13] has recently been proposed to improve 
the accuracy of sensitivity estimation using the self 
calibration data. It regards both the coil sensitivities and the 
desired images as unknowns to be solved for jointly and 
formulates the reconstruction as a nonlinear problem. The 
existing algorithm solves the problem by iterative 
alternating minimization, which requires considerable 
number of self calibration data for an accurate initial 
sensitivity estimation.  

In this paper, we propose to use the variable projection 
method [14] to solve the nonlinear optimization problem. 
The method takes advantage of the separability of two 
unknown variables to achieve an optimal solution. It 
requires very few self calibration data because it converges 
regardless of the initial value. The proposed method has 

1027978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



been tested on a set of real data and demonstrated promising 
results.

2. PROPOSED METHOD 

2.1. Problem Formulation 
JSENSE is based on VD acquisition with both the ACS 

data and the reduced data used for reconstruction. In 
JSENSE, the encoding matrix E is formulated as a function 
of sensitivity, and the imaging equation is given by 

dfaE )( ,                                            (1)
where a  is the parameter representing the coil sensitivities 
and is also an unknown to be solved. Although there can be 
different ways to parameterize the sensitivities, we use a 
simple polynomial function to model the coil sensitivities as 
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where ryx ),(  denotes the location of a pixel, ( x , y )
denotes the averaged location, and  is the coefficient 
of a polynomial, forming the unknown vector a . We 
choose the highest power of 

jila ,,

x  and  to be the same and 
define it as the order of the polynomial. High order 
polynomial improves the accuracy of the model, but also 
increases the number of unknowns to be solved for. Because 
of the smooth nature of coil sensitivity in general, 
polynomial of low order is usually sufficient. Under this 
model, the encoding matrix explicitly becomes 
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Taking into account k-space data noise which is usually 
additive white Gaussian, we can jointly estimate the 
coefficients for coil sensitivities a  and the desired image f  
by finding a penalized least-squares solution. Specifically,  
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where the cost function to be minimized is 
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2.2. Variable Projection Method 
The most straightforward way to obtain a numerical 

solution of the above nonlinear least squares problem in Eq. 
(4) is the Newton algorithm. The update equation for the kth 
iteration is given by 
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where the gradient and the Hessian are given by 
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where matrices  and   denote the partial derivatives of 
the error vector e  with respect to the vector f and a, 

 and denote the second order derivatives with 
respect to (a,a), (a,f), and (f,f), respectively. However, 
computation of gradient and Hessian is intensive due to the 
large size of the problem. To efficiently find the optimal 
solution to (4), we take advantage of the fact that the two 
unknowns a and f are separable and use the variable 
projection (VP) method [14] for the nonlinear least squares 
problem. Specifically, the conventional SENSE solution  
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is plugged into Eq. (1), and the optimization problem in Eq. 
(4) is simplified to 
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where only the parameters of the sensitivity functions a  are 
to be sought for. Given a , the desired image f  can then be 
reconstructed by Eq. (9). It was proved [14] that  
(i) If a is a critical point (or a global minimizer) of Eq. 

(10), and f is obtained by Eq. (9) accordingly, then 
(a,f) is a critical point (or a global minimizer) of Eq. 
(4).

(ii) If (a,f) is a global minimizer of Eq. (4), then a is a 
global minimizer of Eq. (10) and the residual of both 
functions are equal. Furthermore, if there is a unique 
f among the minimizing pairs in Eq. (4), then f must 
satisfy Eq. (4).  

Therefore, the VP solution is the same as the solution to 
the original problem in Eq. (4).  

Applying the Newton algorithm to the separated 
problem, the gradient and Hessian matrix are given by  
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in the Newton algorithm. For the JSENSE formulation, we 
have
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Noting that  and  because e is a linear 
function of both f and a, the Hessian can be computed 
without evaluating second derivatives. However, the 
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Hessian cannot be assumed to be positive definite. To 
simplify computation, the variable change is ignored in the 
separated problem, and f is kept fixed when solving for a in 
each step. Then the Hessian is approximated as 

aaa ee HU "                                   (13) 
Thereby, the update equation becomes 
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where , , and + denotes the 
pseudo inverse. It has been shown that the algorithm has a 
linear convergence rate, which is higher than that of the 
Gauss algorithm applied to the nonseparated problem [15].  
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2.3. Efficient Implementation 
Due to the large size of matrix , calculation of the 

pseudo inverse in Eq. (14) can be computationally intensive. 
QR factorization is usually used for reduction of 
computational complexity. In this case, QR factorization 
requires explicit representation of the large matrix ,
which is memory demanding. Instead of QR factorization, 
we use iterative conjugated gradient method for calculation 
of the pseudo inverse where all matrix multiplications are 
implemented by direct operations. Detailed description of 
the VP algorithm is as follows. 
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end
       Sensitivity parameter a=ak+1;
        Reconstructed image .(a)dE(a)E(a)Ef HH 1][

The novel nonlinear formulation of image 
reconstruction allows the sensitivity and the image to be 
estimated simultaneously, thereby prevents the errors of the 
independently-estimated sensitivities from propagating to 
the final reconstruction as in conventional SENSE. 

 
3. EXPERIMENT RESULTS 

 
The proposed approach was tested on a set of real data. 

The in vivo brain data were acquired  on a 3T commercial 
scanner (GE Healthcare, Waukesha, WI) and an 8-channel 
head coil (Invivo, Gainesville, FL) was used to scan a 

healthy volunteer with a 2D T1-weighted spin echo protocol 
(axial plane, TE/TR = 11/700 ms, 22cm FOV, 10 slices, 
256x256 matrix). Informed consent was obtained from the 
volunteer in accordance with the institutional review board 
policy. The fully sampled k-space data were used to 
generate a sum-of-square (SoS) reconstruction, which is 
used as the reference image for error calculation. We 
manually remove some phase encoding lines to simulate a 
reduction factor of 4 in outer k-space, and the number of 
ACS lines in central k-space of 16, 24, and 32. The 
performance of the proposed algorithm for the VD 
acquisition can be evaluated visually in Fig. 1.  

 

 
 
Fig. 1 Reconstructed images using the self-calibrated 
SENSE (left) and the VP reconstruction (right). The top, 
middle, and bottom rows are reconstructions using 16, 24, 
and 32 ACS lines, respectively. 

It is seen that the proposed VP method greatly reduces 
the image aliasing artifacts in SENSE reconstruction using 
the conjugate gradient (CG) method [5] with self-calibrated 
sensitivities. The improvement is especially significant 
when less ACS lines are used. In addition, the VP 
reconstructions look quite similar for difference ACS lines 
except that the signal-to-noise ratios are slightly improved 
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due to the increased number of data used in reconstruction. 
It suggests the VP method barely depends on the initial 
values as long as they are close to the optimal values.  
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