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ABSTRACT

In this paper we propose the use of a neurobiology-based

saliency measure to improve the performance of a quantitative-

qualitative measure of mutual information for rigid registra-

tion of 4D renal perfusion MR images. Our registration

method assigns greater importance to more salient voxels by

applying a soft thresholding function to normalized saliency

values. The resulting saliency map is a better representa-

tion of what is truly visually salient than an entropy-based

saliency map. Our tests on real patient datasets show that in-

corporating this saliency measure produces better registration

results than traditional entropy-based approaches.

Index Terms— Neurobiological model, saliency, mutual

information, rigid registration, renal MR.

1. INTRODUCTION

In renal perfusion MRI, the abdomen is scanned at regular

intervals following bolus injection of a contrast agent. Re-

nal perfusion MR image sequences are often affected by the

motion induced by patient breathing or movement, resulting

in misalignment of successive image samples. For automated

analysis of the acquired images, it is important that image

samples at different time instants be optimally registered.

Recent works on registration of kidney images include

a phase difference movement detection method [1], an edge

based registration method [2], and a registration framework

based on wavelet and Fourier transforms [3]. Mutual Infor-

mation (MI) based methods can deal with large intensity vari-

ations arising due to flow of contrast agent, and have also

proved to be successful in multimodality image registration.

However, most MI-based registration methods give equal im-

portance to all voxels. Pluim et al. in [4] used gradient infor-

mation to complement MI for better results. Luan et al. used

a quantitative-qualitative measure of MI [5] that weighs vox-

els according to their saliency values or importance. In [5]

the saliency of a voxel is determined by considering the en-

tropy of the intensity distributions over a neighborhood. This

approach although producing good results has certain limita-

tions. By considering the intensity distribution over a small

neighborhood, an entropy-based saliency measure does not

take into account what is truly salient for the human eye and

is subject to the effects of noise. In addition, there is the in-

herent problem of the choice of an appropriate scale.

To overcome these problems, we propose to calculate the

saliency using a neurobiology-based approach. In the neu-

robiological model of attention [6], the degree of saliency is

determined by measuring the contrast between different im-

age scales, in terms of low level features such as intensity and

edge orientation. As a closer imitation of the human visual

system, the neurobiology-based saliency measure has the fol-

lowing three advantages: 1) multiple scale representation of

an image overcomes the problem of choosing an appropriate

scale for the neighborhood; 2) by subsequent subsampling of

the image, information of larger neighborhoods is incorpo-

rated to give a more robust saliency map; and 3) by the use of

lateral inhibition to suppress noise in individual feature maps,

noisy regions in the saliency map are inhibited to produce a

final map that has distinct salient regions.

The rest of the paper is organized as follows. In Section 2

we give a brief outline of how the saliency map is generated.

Section 3 describes our registration algorithm. We discuss our

results in Section 4 and conclude with Section 5.

2. NEUROBIOLOGY-BASED SALIENCY MAP

Saliency is a concept which states that there are regions in

a scene that are more “attractive” than their neighbors and

hence draw attention. Attention can be due to bottom-up cues

or top-down influences. Here, we opt for the visual attention

based model [6] that uses bottom-up cues such as local image

contrast, presence of edges, color and texture.

A saliency map of an image is a representation of the

salient regions of the image. Saliency at a given location is de-

termined primarily by the contrast between this location and

its surroundings. The image formed on the fovea of the eye

is the central object on which a person is focussing his atten-

tion resulting in a clear and sharp image. Regions surround-

ing the central object have a less clearer representation on the

retina. To simulate this biological mechanism, an image is

represented as a Gaussian pyramid comprising of layers of

subsampled and low-pass filtered images. The central repre-

sentation of the image on the fovea is equivalent to the image
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at higher spatial scales, and the surrounding regions are ob-

tained from the lower spatial scales. The contrast is thus the

difference between these scales.

Let I(c) and I(s) denote the intensity map at scale c and

s, respectively. The contrast map I(c, s) is defined as

I(c, s) = |I(c) � I(s)|, (1)

where the center is given by level c ∈ {1, 2, 3} and the sur-

round is given by level s = c+σ, σ ∈ {3, 4} in the Gaussian

pyramid. Different features (luminance, edge, etc.) are ex-

tracted from the images to construct feature maps which con-

tribute to the final saliency map. Application of the process of

lateral inhibition suppresses noise to a great extent resulting

in a saliency map that has distinct salient regions. A detailed

description of the method can be found in [6].

3. METHODOLOGY

Given a 4D (time varying 3D volumes) renal perfusion MRI

dataset of a patient, our objective is to align the volumes in a

manner such that there is minimal registration error between

corresponding voxels at different time instants. The major

challenge in perfusion image registration is that the intensity

variation of each individual voxel with time. Thus, it is impor-

tant to devise a robust registration method that is able to deal

with such intensity variations. Here we employ a quantitative-

qualitative MI based method incorporating visual saliency as

the utility of each voxel that works well for registration of

multimodality brain images [5]. Our method is different in

that instead of using an entropy-based approach to generate

the saliency map, it uses the neurobiology-based approach as

described briefly in Section 2, which leads to a more effec-

tive measure of the saliency. Another difference is that in our

method the utility of each voxel is defined as a nonlinear func-

tion of the saliency measure, rather than using the saliency

measure directly as the utility.

3.1. Quantitative-Qualitative Measure of MI

The mutual information of two images is a combination of

their entropy values, both separately and jointly [7]. The MI

of two images A and B is given by

MI(A,B) =
N∑

n=1

M∑
m=1

p(An, Bm) log
p(An, Bm)

pnqm
, (2)

where p(An, Bm) is the joint probability of image intensities

An and Bm, while pn and qm are, respectively, the marginal

probabilities of the image intensities An and Bm.

The traditional measure of MI only defines its quanti-

tative aspect. However, the joint occurrence of events has

different significance. While registering kidney images, the

joint probability of voxel intensities in the region of the kid-

ney hold far greater relevance than that of voxel intensities

in other regions. A mathematical representation of this qual-

itative importance factor is called the utility measure [8].

Let u(An, Bm) represent the joint utility of the events An

and Bm, the quantitative-qualitative measure of MI (QMI) is

defined by

QMI(A,B)=
N∑

n=1

M∑
m=1

u(An, Bm)p(An, Bm) log
p(An, Bm)

pnqm
.

(3)

In our method, we use the neurobiological approach to

calculate the saliency value of each voxel in the volume [6].

The resulting saliency values are then normalized such that

the maximum saliency value is one at each time instant. Let

S(x) denote the normalized saliency value at a voxel x, its

utility U(x) is defined as a nonlinear function of S(x):

U(x) = 0.5 ×
[
1 +

2
π
× arctan

(
S(x) − S0

ε

)]
, (4)

where S0 and ε are the two free parameters. Here S0 serves

as a soft threshold, i.e., U(x) = 0.5 when S(x) = S0; ε
controls the width of the transitional region, i.e., the smaller

ε is, the closer U resembles a step function. By adjusting the

values of S0 and ε, the utility defined in (4) allows us to place

more importance on voxels with larger normalized saliency

values, and at the same time, to ignore voxels with smaller

normalized saliency values, resulting in improved registration

accuracy. Experimentally we found that a value of 0.4 for S0

and 2.0 for ε were robust for the renal MR images in our study.

Let UA(x) be the utility value of voxel x with intensity i
in A and UB(x) the utility value of voxel y with intensity j in

B, the joint utility value of intensity pair (i, j) is given by

u(i, j) =
∑

UA(x) × UB(y). (5)

In order to compute the joint utility, the utility values at cor-

responding voxels are multiplied and summed over all voxels

having a particular intensity pair.

3.2. Optimization
The optimal transformation T ∗ between the source image IA

and the target image IB can be obtained by maximizing the

QMI value between IB and the transformed image IAT un-

der the transformation T as

T ∗ = arg max
T

QMI(IB , IAT ). (6)

In this work we consider the kidney as a rigid body and re-

strict the transformation T to have 6 degrees of freedom ac-

counting for both translation and rotation in 3D.

A multi-resolution framework, using four resolutions, was

adopted to make the optimization algorithm run faster [9]. In

the coarsest resolution an exhaustive search over the rotation

parameters is performed and for each rotation parameter op-

timization for translation parameters is obtained. For the sec-

ond coarsest resolution, local optimization is performed for
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(a) (b) (c)

Fig. 1. (a) kidney in one typical frame; (b) saliency map gen-

erated by entropy-based method; and (c) by neurobiological

model.

each of the candidate transformation parameters. For the sub-

sequent finer resolutions local optimization is performed on

the input candidate transformation parameters and the final

registration result is obtained.

4. RESULTS

We tested our registration algorithm on 5 real patient datasets.

The images were acquired on a GE 1.5T Signa scanner fol-

lowing bolus injection of Gd-DPTA contrast agent. The im-

age matrix was 256 × 256 pixels and the number of volumes

acquired varied from 24-44, with 10-18 slices in each volume.

4.1. Saliency Map
Fig. 1(a)-(c) show respectively the cropped image corre-

sponding to the right kidney (of a patient) in one slice, the

saliency map generated by the entropy-based approach in [5],

and our neurobiology-based approach. We used only lu-
minance and edge information for determining the saliency

map. The saliency map shown in Fig. 1 (b) gives a lot of

importance (in terms of saliency values) to less important

regions surrounding the kidney. With the entropy-based

method, regions with uniform intensity distributions have

lower entropy, which implies that the kidney having uniform

intensity (especially during the wash-in of contrast agent)

will have an importance that is not much different from its

surrounding areas. In contrast, the saliency map in Fig. 1 (c)

overcomes the drawbacks of the entropy-based approach,

showing distinct salient regions corresponding to the kidney.

Although Fig. 1 (c) gives the impression of a mask, replacing

the mathematically calculated saliency map with a subjective
hand-drawn mask may not lead to good registration results.

Moreover, such masks would be required for frames at all

sampling instants making it a very tedious approach.

4.2. Qualitative Evaluation
We first evaluate the registration results qualitatively by vi-

sual examination. Fig. 2 (a) shows the kidney at the instant

just prior to the wash-in of the contrast agent and Fig. 2 (b)

shows the kidney at the next sampling instant when the wash-

in of the contrast agent has already occurred. As shown, there

(a) prior to wash-in (b) post wash-in

(c) before registration (d) after registration

Fig. 2. Difference images before and after registration.

has been a slight displacement of the kidney in the upward

direction due to patient breathing. Consequently, the differ-

ence image before registration in Fig. 2 (c) shows the inten-

sity changes due to both patient motion and the wash-in of the

contrast agent. Our objective is to obtain a difference image

that displays the intensity changes of the kidney purely due to

wash-in of the contrast agent. The difference image after ap-

plying our registration algorithm is shown in Fig. 2 (d), which

verifies that the intensity difference is largely between voxels

corresponding to the same physical location of the kidney. We

have evaluated all the 5 datasets by observing the difference

images as well as the registered datasets, and have obtained

satisfactory registration results. Next, we attempt to evaluate

the registration results quantitatively.

4.3. Quantitative Evaluation

In the absence of the ground truth for the clinical datasets,

we tested the performance of our algorithm by first carefully

selecting a dataset without any noticeable motion during the

wash-in of the contrast agent; and then simulating the patient

breathing motion by displacing the kidney volumes with a set

of random but known translations and rotations. The trans-

lation parameters were randomly chosen from a uniform dis-

tribution between (−10, 10) voxels for head to feet (HF) and

left to right (LR) direction and between (−3, 3) voxels in the

anterior to posterior (AP) direction. Similarly, the rotation

parameters were chosen between ±10◦ along all directions.

We applied three registration algorithms to the simu-

lated 4D dataset, namely, the method in [4], quantitative-

qualitative MI as in [5], and our method. The search ranges

for the translation and rotation parameters were set to be
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(a) ground truth (b) using method in [4]

(c) using QMI in [5] (d) using our method

Fig. 3. Comparison of difference images obtained using three

registration methods.

±50 voxels in the HF and LR directions, ±5 voxels in the

AP direction, and ±50◦ for all rotations. The mean value of

translation errors in voxels were (0.46, 0.42, 0.16) using the

method in [4], (0.44, 0.43, 0.15) using the QMI in [5], and

(0.3, 0.29, 0.1) using our method. The mean rotation errors

were (0.0, 0.0, 0.57), (0.0, 0.0, 0.55), and (0.0, 0.0, 0.43) in

degrees, respectively. Using respectively the intensity and

edge information to quantify voxel importance, the meth-

ods in [5] and [4] have similar errors, larger than those of our

method. This suggests that the intensity and edge information

have nearly equal individual contributions in determining the

importance of a region but a combination of these two leads

to greatly improved results. Fig. 3 compares the difference

images obtained using the three methods for one particular

slice. It can be seen that the difference image obtained using

our method, as shown in Fig. 3(d), is the most consistent with

the ground truth difference image shown in Fig. 3(a). This

is also reflected in the mean square error between the differ-

ence images shown in Fig. 3(a)-(c) and the ground truth; our

method has the smallest mean square error. The above results

indicate that our method is the most accurate among the three

methods for this registration task.

5. CONCLUSION

In this paper, we proposed the use of a neurobiology-based

visual attention model to determine voxel saliency for the

purpose of image registration. Our approach overcomes the

problem of scale selection. The resulting saliency map is

less noisy and has distinctly salient regions, thanks to a lat-

eral inhibition process and the combination of luminance

and edge information. By incorporating a soft thresholding

function our registration algorithm is able to give more im-

portance to voxels with higher saliency and hence leads to

improved registration accuracy. We compared the perfor-

mance of three registration methods, including our method,

a traditional MI based method, and a qualitative-quantitative

MI based method, on 4D renal perfusion MRI datasets. The

experimental results show that our method outperforms the

other two methods in terms of registration accuracy.
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