
A METHOD FOR FRAME-BY-FRAME US TO CT REGISTRATION IN A JOINT
CALIBRATION AND REGISTRATION FRAMEWORK

Matthias Peterhans1, Haydar Talib1, Marius G. Linguraru2, Martin Styner3, Miguel A. González Ballester1
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ABSTRACT
A method is presented for achieving robust joint calibration and reg-
istration in ultrasound (US) to CT registration for computer assisted
orthopedic surgery. We propose using an effectively real-time frame-
by-frame registration algorithm during US image acquisition. This
approach provides more control to the surgeon, is more robust to
initial conditions, and is computationally efficient. We then use the
estimated registration of the frame-by-frame method to initialize a
joint calibration and registration algorithm, and this is shown to pro-
duce over all more accurate and repeatable results. Experiments are
performed using simulated US images of the lumbar vertebra and the
distal femur as potential areas of interest for surgical applications.

Index Terms— Point-to-surface registration, Kalman filtering,
ultrasound, computer-assisted surgery, calibration

1. INTRODUCTION

In computer-assisted orthopaedic surgery (CAOS), surgeons often
benefit from enhanced visualization by registering a pre-operatively
acquired medical image, such as from CT or MRI, to the patient’s
anatomy during surgery. Registration is usually achieved by digitiz-
ing bone surface points from the patient using a navigated pointer,
and determining the optimal transformation between the pre-operative
data and the points. The use of navigated 2D ultrasound (US) imag-
ing for acquiring bone surface points to be used in registration is an
ongoing area of research, and one of the main advantages of using
US is that points can be acquired non-invasively. This can render
certain procedures minimally-invasive as well as provide bone sur-
face points from surgically inaccessible regions [1, 2].

Concerning the use of US, a navigation system typically pro-
vides the positions of the US probe, the bone(s) to be operated, and
possibly other tools used for the intervention. Navigation is made
possible by using dynamic reference bases (DRBs), which are mark-
ers that are rigidly attached to the objects in question. A registration
algorithm would provide the rigid transformation between the pre-
operative dataset (typically CT in the domain of orhopedics) and the
tracked DRB that is attached to the anatomy. In this scenario, the
transformation between the US image and the DRB attached to the
US probe also needs to be determined, and this is typically referred
to as US calibration. US calibration is another active area of re-
search, and most approaches propose that calibration be performed
in a water bath using some phantom of known geometry. The re-
sulting transformation depends on eight parameters: six parameters
of a rigid transformation as well as one scaling parameter for each
dimension of the US image.

Moghari et al. proposed using the Unscented Kalman Filter
(UKF) for rigid registration in CAOS, and showed that it had im-

proved performance compared to the Iterative Closest Point method
[3]. The advantage of the Kalman filter is that it is a computation-
ally efficient least-squares solver, which is an ideal feature for intra-
operative registration applications. Furthermore, the UKF was origi-
nally formulated to avoid some of the linearizations that occur in the
classic formulation of the Kalman Filter and the Extended Kalman
Filter (EKF) [4].

The work presented in this paper can be regarded as an exten-
sion of the work done by Moghari et al. whereby the workflow is
adjusted to reduce effective computation time and increase the sur-
geon’s control over the registration, by considering that registration
could be performed during the US image acquisition, as suggested
in our previous work [5, 6]. Using this approach, the surgeon would
then be more able to interpret the quality of the image acquisition
and judge whether more US images would be needed, thus provid-
ing more control and helping to ensure an improved and less time-
consuming registration. Once the image acquisition is complete, and
a suitable registration is provided, the method of joint US calibration
and registration proposed by Barratt et al. [1] can then be used to
refine the outcome. Barratt et al. perform joint calibration and regis-
tration by optimizing the necessary parameters over the complete set
of US-acquired bone surface points, using a Levenberg-Marquardt
algorithm to minimize their cost function [7].

As will be demonstrated by the experiments presented in this pa-
per, using our frame-by-frame UKF registration would improve the
outcome of Barratt’s joint calibration and registration algorithm in
terms of accuracy, robustness to initial conditions, and furthermore
fewer iterations would be needed for convergence once the US im-
ages are acquired.

Several orthopedic procedures could benefit from an US-based
navigation system, and the areas of interest would be the proximal
femur, the pelvis, the distal femur, the shoulder, as well as the spine.
For the experiments described herein, we will consider one lumbar
vertebra and the distal femur as examples for target applications.

2. CALIBRATION AND REGISTRATION FOR
NAVIGATED ULTRASOUND

The problem at hand is in finding the transformation that would
place the CT-generated surface model in the coordinate space of the
anatomy. The quality of a registration result would depend on the
quality of the measurement data. In the case of US images, the latter
statement implies that the quality of the registration result would de-
pend on the quality of the US calibration in addition to other factors.

Barratt et al. [1] introduced a framework for registering a point
set obtained from US imaging while simultaneously optimizing cal-
ibration parameters. In their application, anatomical objects with

1131978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



attached reference marker are imaged by a navigated ultrasound sys-
tem. Using the tracking data and the estimates of the calibration and
registration parameters, the point cloud obtained from US can be
mapped to the CT image space. The distances between the mapped
US points and the CT surface are directly related to the quality of the
calibration and registration parameter estimates and can therefore be
used as a cost function for optimizing these parameters.

After acquiring a set of US images, the cost function represent-
ing the sum of squared distances between mapped US points and the
CT surface is optimized using the Levenberg-Marquardt (LM) algo-
rithm. The authors show that registration accuracy is improved when
calibration parameters are included in the optimization scheme. Hence
they provide a method to improve the measurement data while per-
forming US-CT registration.

As in [1], we will assume that an initial estimate for the cali-
bration parameters is available, which is realistic in the sense that
it could quickly be obtained pre-operatively with the use of a cali-
bration phantom [8]. Furthermore, it will also be assumed that bone
surface points could be automatically segmented from the US im-
ages with some degree of error.

2.1. Registration Based on the Unscented Kalman Filter

For the UKF-based registration method, Moghari et al. [3] define
the measurement zk as the set of points in world coordinates ac-
quired by segmenting the US images. At a given time step k, the
state xk is comprised of the true parameters that represent the trans-
formation between the US points and the corresponding points on
the surface model, denoted by ẑ-

k. The estimate of this state, which
will be determined by the UKF, is denoted x̂k, and is a 6× 1 vector
[α, β, γ, tx, ty, tz]

T representing the parameters of a rigid transfor-
mation. The CT surface points ẑ-

k form the predicted measurement
of the UKF at time step k, and are obtained by searching for closest
points using Euclidean distances.

The predicted measurement ẑ-
k is defined by:

ẑ-
k = h(x̂k) (1)

ẑ-
k = TREG(x̂k) · ẑ-

0 (2)

where the matrix TREG is a 4× 4 rigid transformation matrix using
the estimate of the parameters, x̂k, at time step k. ẑ-

0 are the initial
coordinates of the corresponding surface points.

At each prediction step of the UKF, the estimated state x̂k is
applied to the surface at the initial position, S0, producing Sk. Cor-
respondence is determined between the US points zk and Sk, which
yields ẑ-

k, and when the frame-by-frame registration procedure is
completed, the resulting state is applied to S0.

The predicted state and predicted state error covariance are prop-
agated in the prediction step using:

x̂-
k = x̂k−1 (3)

P-
k = Pk−1 + Qk (4)

In the subsequent correction stage the estimates are updated us-
ing the usual Kalman filter equations:

x̂k = x̂-
k + Kk (zk − ẑ-

k) (5)

Pk = P-
k −KkPzzK

T
k (6)

where the Kalman gain Kk = PxzP
−1
zz is obtained using the Un-

scented Transform to compute the predicted state-measurement and
the predicted measurement covariances [3].

Fig. 1. Simulated US points overlaid onto (left) L4 lumbar vertebra
and (right) distal femur

2.2. The Frame-by-frame Calibration and Registration Proce-
dure

Moghari et al. [3] applied the UKF to estimate rigid transformation
parameters in US-to-CT registration. By their implementation, the
UKF iterates N times, where N is the number of points in their zk,
and for each iteration, the number of points is gradually increasing.
While this approach usually provides smooth filter behavior, it does
not take advantage of the Kalman filter’s sequential real-time nature.
For the work presented here, we propose using the UKF to update
the registration as navigated 2D US images are acquired.

Each US frame is treated as one signal, which yields a coplanar
cloud of points, zk. The registration is updated with each newly ac-
quired frame, and so the time step k is now related to the number of
US frames, as they are acquired, rather than the number of points.
During image acquisition, the surgeon can then receive visual and
numerical feedback in terms of how well the algorithm fits the sur-
face to the US-acquired points. The result of this approach is that
the acquisition can be halted once the registration has sufficiently
converged.To stabilize the frame-by-frame processing, a small sub-
set of points from prior US frames is used to complement the point
sets of new frames. That is to say, all or most segmented points of
frame k are kept at iteration k, but 10 randomly chosen points from
each previous frame are also used in the algorithm. The additional
information from prior frames would help ensure that the anatomy
of interest is well-described in 3D. The frame-by-frame UKF regis-
tration would begin once the first three frames have been acquired in
order to avoid an underdetermined problem in the first iterations.

As in [3, 6] points are vertically concatenated to form 3N × 1
vectors for both the measurement zk and predicted measurement ẑ-

k

For these experiments we augmented the UKF only with the state,
and Pzz = Pyy +Rk with Rk a 3N × 3N matrix. Qk and Rk are
initialized and updated such that the registration behaves smoothly,
and further discussion on the selection and updating of the state and
measurement covariances can be found in [3, 4]. Using Wan’s no-
tation [9], we used standard values for the UKF scaling parameters,
that is α = 1e−3, β = 2 and κ = 0.

Barratt et al. propose a three-step process to ensure convergence
of their joint calibration and registration algorithm, whereby first the
registration parameters are estimated, then the rigid calibration and
registration parameters are estimated jointly, and finally the calibra-
tion, registration and the scaling parameters are estimated [1]. In
the following experiments, it will become clear that this approach is
not optimal, and can be time-consuming when considering that the
frame-by-frame registration can provide a suitable estimate during
US image acquisition.
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Fig. 2. Fitting error for the vertebra, histograms show RMS errors
for: (left) 3-step LM method (middle) Frame-by-frame UKF regis-
tration (right) Combined approach

The estimated parameters of the frame-by-frame UKF registra-
tion will be used to initialize the method of Barratt et al., which will
in turn be used to jointly estimate the calibration and registration
parameters in a post-acquisition refinement step. It should be noted
that rather than using a three-step process, the method of Barratt et al.
will be used to immediately estimate the calibration and registration
parameters. The result of this approach is that fewer iterations are re-
quired for convergence, and the calibration and registration outcome
is more accurate than the three-step approach used in [1].

2.3. Experiments

In order to obtain a precise performance evaluation for the method,
simulated data was used in the first series of experiments. Based
on a bone surface model segmented form CT, ultrasound imaging
was simulated and a dataset representing US frames from different
imaging directions was created. The set of true parameters is there-
fore known and can then be used as a gold standard to measure the
accuracy of the algorithms.

Two datasets containing 36 simulated images each were created.
For the first dataset, images of the distal femur included portions of
the femoral shaft, inner and outer tuberosity as well as the condyles,
which are locations that would be accessible on a real patient using
flexion and extension of the knee joint, avoiding the area covered
by the patella. Another dataset represented the L4 vertebra imaged
in anterior-posterior direction. Using US on the spine, areas facing
the back of the patient can be imaged. These include the spinous
process, the articular processes and the transverse processes. Figure
1 shows the two surface models and the surface points obtained by
simulating ultrasound imaging.

The convergence behavior of the algorithms was evaluated by
running a series of experiments with random starting estimates se-
lected within a certain range around the ground truth parameters. For
each dataset, the algorithms were used 100 times, using a different
randomly-generated starting point in each case.

For the vertebra dataset, the calibration parameters were per-
turbed within a range of ±5[deg], ±9[mm] around the true param-
eters for rotation and translation; scaling parameters were chosen
within ±10% of the true scaling parameters. These ranges repre-
sent the differences between the pre-operative calibration and intra-
operative calibration after covering the probe with a sterile wrap and
remounting the marker shield. The range of the scaling parameters
represents the variations in speed of sound that can occur on hu-
man tissue. Registration parameters were chosen within ±10[deg]
for rotation and ±18[mm] for translation aiming to cover the range
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Fig. 3. Corresponding surfaces error for the vertebra, histograms
show RMS errors for: (left) 3-step LM method (middle) Frame-by-
frame UKF registration (right) Combined approach

of parameters obtained by a rough initial registration estimate. The
distributions of all the randomly-generated parameters was uniform.

More erroneous values were generated for the distal femur data.
The calibration parameters laid within a range of±10[deg],±24[mm]
for rotation and translation and ±10% for the scaling parameters.
Registration parameters were chosen within ±20[deg] for rotation
and ±48[mm] for translation.

Robustness to noise and artifacts in ultrasound imaging was tested
by adding isotropic Gaussian noise N (0, 0.3[mm2]) to the simu-
lated ultrasound images. In real ultrasound images, we expect noise
to be anisotropic depending on the imaging direction and the depth
in tissue.

3. RESULTS

To evaluate the registration outcomes, both the fitting errors of the
algorithms as well as the final point-to-point errors were examined.
The fitting error is computed as the RMS distance between corre-
sponding points between the US and surface model datasets. The
point-to-point errors were computed as the RMS distance between
corresponding points between the surface points at the ground truth
position and the surface points at the position estimated by each al-
gorithm, and provides a more meaningful measure for evaluating the
algorithms.

The histograms in figures 2, 3 and 4 illustrate the different sce-
narios of interest. The leftmost histogram contains the results for the
three-step joint calibration and registration method of Barratt et al.
The middle histogram shows the results of the frame-by-frame UKF
registration algorithm that would be performed during image acqui-
sition. The rightmost histogram shows the results of the method of
Barratt et al. (only one step rather than three) when initialized with
the frame-by-frame UKF registration estimate. Immediately it can
be seen that the combined methods yield greater accuracy and more
consistent behavior than the three-step approach.

Fig. 2 illustrates the RMS fitting error for the different scenarios.
Using a value of 2[mm] as the threshold for an acceptable registra-
tion outcome, the three-step LM algorithm yielded 37 out of 100
registrations that satisfy the criterion. 64 cases satisfied the criterion
for the frame-by-frame UKF method, and the combined algorithm
yielded 78 cases of successful registration.

Looking at the RMS errors of corresponding points on the two
surfaces (ground truth and estimated position) in fig. 3, the three-
step LM algorithm again had 37 cases of successful registration.
With 30 cases falling below 2[mm], the frame-by-frame UKF had
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Fig. 4. Corresponding surfaces error for the distal femur, histograms
show RMS errors for: (left) 3-step LM method (middle) Frame-by-
frame UKF registration (right) Combined approach

fewer successful registrations using this error measure. This implies
that although the frame-by-frame approach can fit the measurement
data effectively, the outcome in terms of the registration parameters
may not be ideal and would affect the quality of the registration.
The frame-by-frame UKF had an average RMS error of 1.22[mm]
for the 30 successful cases. Nevertheless, using the frame-by-frame
UKF estimates in the combined approach yielded consistent results,
with 78 successful registrations, which is the same amount as for the
fitting error measure. The combined approach had an average RMS
error of 0.13[mm] for the successful cases.

For the distal femur, we can use a slightly larger threshold of
3[mm] for what is considered to be an acceptable registration. Judg-
ing by the results of fig. 4 the effects of the wider range of erroneous
starting positions can be observed, particularly with the three-step
LM algorithm. Only 8 registrations fell within the criterion, much
less than for the vertebra experiments. The frame-by-frame UKF
yielded improved results, with 50 successful registrations, due to the
fact that the US images sufficiently spanned the distal femur from
different directions. The frame-by-frame UKF had an average RMS
error of 1.66[mm] for the successful cases. Again, the combined
frame-by-frame UKF registration and the joint calibration and reg-
istration of Barratt et al. produced the best results, with 64 registra-
tions below a 3[mm] RMS error, with an average of 0.39[mm]

Finally, the frame-by-frame UKF-based registration reduced the
number of iterations required by the LM algorithm to converge. The
mean number of iterations needed for convergence of the three-step
LM algorithm was 36.5 for the vertebra and 35.6 for the distal femur
experiments. Using the frame-by-frame approach for initialization,
the LM algorithm converged in an average of 15.7 iterations for the
vertebra and 11.6 iterations for the distal femur trials. The frame-by-
frame UKF registration required less than one second per iteration,
that is to say less than one second for each newly acquired US image,
and is therefore a suitable algorithm for intra-operative use since it
would not slow down the surgeon’s workflow.

4. CONCLUSIONS

The combined frame-by-frame UKF and joint calibration and regis-
tration method has shown to provide improved registration outcomes
under non-ideal initial conditions for US to CT registration of bones.

When initialized appropriately, the three-step method of Barratt
et al. has proven to be accurate as well as computationally efficient
[1]. However, we proposed that the UKF could be used to per-
form registration during US image acquisition, which would enable

the surgeon to have more control over the quality of the outcome.
Despite the presence of calibration error in the US data, the UKF
demonstrated stable behavior while optimizing only the registration
parameters. Furthermore, we demonstrated that using the frame-by-
frame registration would improve the performance of the joint cali-
bration and registration method, which would not begin until the all
the US images have been acquired. The approach suggested in this
paper also removes restrictions on the quality of the initialization
needed for registration.

In the future it would be interesting to explore how joint calibra-
tion and registration could be performed using the notion of frame-
by-frame registration, such that the registration algorithm would not
need more time for computation after the US images have been ac-
quired. Also, it will be necessary to address the assumption made
here that some method for the automatic segmentation of bone con-
tours would provide suitable data for the registration algorithm, and
this can perhaps be answered by expanding the methods to work
with intensity values [10]. Future work should then consist of the
automatic treatment of patient or cadaveric data.
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