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ABSTRACT 
 
In this work we present a novel approach for learning non-
homogenous textures without facing the unlearning problem. 
Our learning method mimics the human behavior of 
selective learning in the sense of fast memory renewal. We 
perform probabilistic boosting and structural similarity 
clustering for fast selective learning in a large knowledge 
domain acquired over different time steps. Applied to non-
homogenous texture discrimination, our learning method is 
the first approach that deals with the unlearning problem 
applied to the task of drusen segmentation in retinal 
imagery, which itself is a challenging problem due to high 
variability of non-homogenous texture appearance. We 
present preliminary results. 
 

Index Terms— Selective Learning, Unlearning 
Problem, Probabilistic Boosting, Texture. 
 
 

1. INTRODUCTION 
 
In recent years a vast amount of models have been proposed 
for image segmentation and classification including 
geometric, non-parametric, and statistical models. In depth 
reviews can be found in [3-12]. What one can distil from the 
literature is that given a set of data samples ad-hoc model 
assumptions are hypothesized for model derivation and 
parameters are tweaked to optimize an error criteria in a 
rather heuristic manner. In segmentation and classification 
problems we often evaluate with respect to ground truth 
data obtained by expert knowledge. No quantitative 
information and theoretic foundation of the algorithm 
performance for future datasets are reported. In contrary, 
supervised learning algorithms optimizing for a maximum-
margin decision provide theoretical bounds on the 
generalization performance [1]. However, the problem of 
unlearning in applied areas of learning algorithms has not 
been addressed in depth. Given a learning algorithm the 
usual procedure is to train a model on a given dataset and 
generalization performance is evaluated in a single dataset 

scope. If new knowledge is available batch learning 
algorithms have to be retrained. To ideally adapt to the 
workflow of a certain application it is desirable to inject 
new a posteriori knowledge to the existing learning 
algorithm over time without the need to relearn the 
intelligence over the complete batch. In large knowledge 
domains this might be an expensive task. To give a specific 
example in the field of computer aided medical diagnosis a 
doctor might inject new knowledge into a learning 
algorithm in sparse time frames where an online learning 
over time would be highly desirable. In online learning we 
keep the intelligence obtained so far without complete batch 
retraining while introducing new knowledge into the 
learning algorithm [13]. We do not want to unlearn what we 
have learned so far. 
      In this paper we propose a novel approach for learning 
non-homogenous texture discrimination with the following 
characteristics: i) theoretical bounds on generalization 
performance of the learning algorithm, ii) preservation of 
intelligence after new injection of a posteriori domain 
knowledge, iii) no need for complete batch retraining, iv) 
possible knowledge contribution through collaborative 
filtering, and v) computational efficient selective subspace 
learning. We apply our approach on non-homogenous 
texture discrimination for drusen detection in retinal images. 
The unlearning problem is solved through a structured 
similarity clustering on over-complete Lemarie wavelet 
frames and a probabilistic boosting approach.  
      The remainder of the paper is organized as follows: in 
section 2 we outline prior work in the domain of online 
learning algorithms closely related to the spirit of our work. 
Section 3 describes our approach using structured similarity 
clustering and probabilistic selective boosting. Preliminary 
experimental results are shown in section 4. Finally we 
conclude with future work and open issues. 
 

2. PRIOR WORK 
 
Closely related to the spirit of preventing the unlearning 
problem in a learning framework are online learning 
algorithms and incremental learning techniques. Various 
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approaches exist in realizing an online learning algorithm. 
Phan et al. propose an online learning algorithm using an 
asymmetric boosted classifier [14]. Their method builds up 
on the work of [2] and balances the skewness of the training 
data for equal weighting to deal with knowledge asymmetry. 
Additional constraints on the weight distribution achieve 
faster convergence rate. Graber et al. propose an online 
boosting algorithm for feature selection and apply their 
method to various vision problems [15]. Here a fixed set of 
weak classifiers perform computation of the weight 
distribution.  Their work is inspired by Oza et al. who 
proposed online learning algorithms for boosting and 
bagging for generating decision hypotheses [16]. In his 
work he provides proofs for comparable convergence rates 
between offline and online boosting for a large number of 
iterations. 
      Our approach differs in the following aspects. Rather 
than following a complete online learning approach we aim 
for the ability to selectively learn a subspace of our domain 
knowledge to mimic human learning of fast memory 
renewal targeted to a specific application task. We 
investigate the feasibility on the problem of non-
homogenous texture classification with application to 
drusen segmentation in retinal images. Our method is able 
to keep the intelligence while adapting to sparse injections 
of new domain knowledge over time. Furthermore, our 
method is ideally suited to be integrated into collaborative 
filtering framework for fast distributed domain knowledge 
contribution.  
 

3. METHODOLOGY 
 
To outline our approach we begin with the issue of building 
a texture vocabulary for feature generation. Prior to the 
presentation of our selective learning algorithm we describe 
each key component of the algorithm in more detail. 
 

Texture Vocabulary Construction 
 
To construct a texture vocabulary we focus on regional 
texture descriptors that are robust and discriminative for 
non-homogenous texture appearance. In particular we 
examine the granularity of a texture by employing 
morphological scale space analysis [21] together with other 
texture measures [19, 20]. Consider the multi-scale top-hat 
transform 
 

                  (1) 
 
Dependent on the local structure of the texture,  can be 
adapted to arbitrary shape formations. The transformation 

 denotes the morphological opening at different scale 
resolutions of . In our case we use circular flat shaped 

structuring elements for . We also 
incorporate other non-homogenous texture descriptors such 
as edge histogram features [19] and various other common 
texture measures [20]. We build a richer feature space by 
including additional interaction terms between the features. 
Feature selection for optimal generalization performance is 
then learned from our knowledge domain using boosting as 
described in [2]. Optimal features are selected minimizing 
the training error through a weighted combination of weak 
hypotheses with an upper bound of 
 

           (2) 
 
This approach has the advantage that given our existing 
knowledge domain we compute a meaningful feature 
representation that are not based on heuristics with weak 
assumptions. Rather the obtained feature set comprises the 
best selection for our given learning task optimized for 
minimization of training and generalization error bounds 
through maximum-margin learning. 
 

Structural Similarity Clustering 
 
For meaningful texture information we make use of an 
adaptive multi-channel wavelet representation [18]. We start 
with a hierarchical approach to perform structural similarity 
clustering. By structural information we mean the texture 
information at multiple resolutions to cope with high 
variability in non-homogenous texture appearance. Texture 
regions are portioned into homogenous compositions 
through supervised multi-scale over-complete Lemarie 
wavelet frame learning. The clustering starts with a low 
frequency texture subspace to assign similarity assignments 
among classes and then gradually refine membership 
assignments by incorporating higher frequency subspaces 
during clustering.  
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Fig. 1: Example of different wavelet subspaces sampled from over-
complete Lemarie wavelet frames for texture based structural similarity 
clustering. Row I and II are obtained by using only the low frequency 
channels. Row III and IV show examples where only level 3 and 4 was 
discarded. 
 
Once a representation is found for structural texture cues we 
perform unsupervised learning to separate the feature space 
into non-overlapping clusters to learn a partition function. 
Any standard unsupervised learning algorithm such as 
expectation maximization can be used for this purpose. 
Once we obtain a partition function of our knowledge 
domain we can assign the cluster membership for a new test 
sample by optimizing for the closest similarity match with 
highest probability. In this way we selectively learn a sub 
domain allowing more efficient learning without the need 
for complete batch relearning. A non-linear decision 
hypothesis is learned in this subspace using boosting. 
 

Probabilistic Selective Boosting 
 
The first provable polynomial-time boosting algorithm was 
initially proposed by Schapire [1].  The underlying idea of 
boosting is to combine simple weak learners to form a 
learning ensemble of hypotheses with higher accuracy. If 
we have a set of weak learners  boosting builds 
a linear weighted ensemble hypothesis 
 

               (3) 
 
For details on how to compute  we refer to [1]. 
Equation 3 aims to find an optimal weighted sum of  
by iteratively minimizing an exponential loss function  
 

    (4) 
 
The motivation for using a boosting approach is the strength 
of a confidence estimate in our prediction through bounds 
on generalization performance. Schapire showed that given 
the margin on example  
 

       (5) 
 
the generalization error is at most 
 

       (6) 
 

for any  with high probability. In our case we compute 
a distribution over ensemble hypotheses  to obtain a 
more robust learning estimate of the maximum-margin 
decision function. A summary of our learning approach is 
described below. 
 
Algorithm: Selective Learning to Prevent Unlearning 
 
Given a knowledge domain  at 
time t, where  denotes expert knowledge and  image 
data 
 
 Perform structural similarity clustering  
 Let the clustered knowledge domain  be 

 with  
 Find , s.t.  with  

 
 

 Learn a set of weak classifiers  using boosting 
 and normalize hypothesis  

 Compute distribution over  
 Apply  to  to get  and insert  
to  

 
 

4. EXPERIMENTS AND RESULTS 
 
We evaluate our learning approach on a database of 179 
images comprising normal cases and diseased cases with 
high phenotype variability in disease expression. We select 
4 test samples for different texture types of drusen to 
evaluate generalization performance and mimic the 
application workflow it will be used in. Below is an 
example of an obtained cluster  showing examples of 
similar non-homogenous texture appearance.   
 

 

 
 
Fig. 2: Example set of similar texture types obtained from structured 
similarity clustering on over-complete Lemarie wavelet frames. 
 
The table below shows detection results using our learning 
framework at four different time frames for two different 
texture complexities. 
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Table. 1: Example set of similar texture types obtained from structured 
similarity clustering on over-complete Lemarie wavelet frames. 
 

 T=1 T=2 T=3 T=4 
Texture I 0.867 0.813 0.922 0.896 
Texture II 0.717 0.732 0.819 0.852 

 
5. CONCLUSION 

 
We have presented a learning approach for non-
homogenous texture discrimination without facing the 
unlearning problem with application to drusen segmentation. 
Preliminary results seem promising. To our knowledge no 
such system was reported for non-homogenous texture 
discrimination. Future work is devoted to an in depth 
evaluation of our learning approach to other object targets 
as well as research towards a generalization of our learning 
algorithm to other application domains. Furthermore clinical 
validation studies will follow. 
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