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ABSTRACT
Functional magnetic resonance imaging (fMRI) and electro-

encephalography (EEG) provide complementary information

about the brain function. We propose a novel scheme to exam-

ine associations between these two modalities using canonical

correlation analysis (CCA). Our multimodal canonical corre-

lation analysis (mCCA) scheme utilizes inter-subject covari-

ations to quantitatively link the two modalities and to esti-

mate the spatio-temporal areas of association. We evaluate

the performance of mCCA using simulated fMRI- and EEG-

like data and note its ability to effectively identify associations

across modalities. Also, our experiments on actual data from

an auditory oddball task reveals associations of the tempo-

ral and motor areas with the N2 and P3 peaks, a finding that

is consistent with previous studies. Additionally, we com-

pare the performance of mCCA to the recently introduced

joint-ICA technique for estimating spatio-temporal connec-

tions from multimodal data and discuss the advantages and

limitations of each.

Index Terms— biomedical signal analysis, magnetic res-

onance, electroencephalography, multimodal analysis, canon-

ical correlation analysis

1. INTRODUCTION

An increasing number of studies are collecting multiple

measurements e.g. functional magnetic resonance imaging

(fMRI) data, structural MRI data, electroencephalography

(EEG) data, genetic data, and others from the same partici-

pants to identify differences across treatment groups. Each

modality has its advantages as well as limitations and the

purpose of analyzing multiple modalities is to utilize the

common as well as unique information from complementary

modalities to better understand neurological activity. Re-

cently developed techniques for combined analysis perform

either data integration (based on simple co-registration or

using one modality to constrain the other) or data fusion

(incorporating interactions among imaging types).
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NSF grant 0612076.

In this paper, we examine the connections between fMRI

and EEG data through inter-subject covariations. FMRI pro-

vides information about dynamic blood flow changes in re-

sponse to a stimulus with millimeter spatial and second tem-

poral resolution, whereas EEG provides information about

electrical activity of the brain with centimeter spatial and mil-

lisecond temporal resolution. Since these two modalities are

rich in information at different spatial and temporal scales, a

multimodal analysis could provide novel understanding about

the brain function. At the same time, the fundamentally dif-

ferent nature of these modalities requires careful examination

of the assumptions made to the multimodal analysis model.

We propose a scheme to examine associations between

multiple modalities using canonical correlation analysis. The

multimodal canonical correlation analysis (mCCA) scheme,

initially preprocesses the two modalities to obtain lower di-

mensional features of interest. Our data model enables the

decomposition of the two feature sets, into a set of compo-

nents (i.e., spatial areas for fMRI or temporal segments for

EEG), each component associated with a single modulation

profile across subjects (i.e., profile of intersubject variations).

Multimodal CCA seeks the spatial areas of the brain that are

associated with the temporal portions of the bioelectric poten-

tials on the basis of the correlation between the corresponding

inter-subject variations. This is a novel application of CCA to

the data fusion model since previous applications of CCA to

fMRI data [1, 2] utilize spatial correlation rather than inter-

subject co-variances to perform data decomposition.

Independent component analysis (ICA) has been success-

fully utilized for source separation of biomedical data [3] and

more recently, it has been extended to jointly analyze data

from different modalities. Joint-ICA [4] has been used to

fuse information from fMRI and event related potential (ERP)

data. It uses statistical independence among the components,

which are formed by combining the spatial fMRI locations

and the temporal ERP segments, as the criteria for decom-

position. Para-ICA [5] on the other hand, performs separate

ICA analysis on each modality and enhances the inter-subject

co-variations by constraining the correlations between mod-

ulation profiles. Like mCCA, para-ICA is flexible in that it
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does not assume identical inter-subject variations, however,

para-ICA uses an adaptive algorithm whose performance de-

pends on the choice of the learning rates and the threshold

above which the correlations are to be enhanced.

The foremost difference between mCCA and the ICA-

based techniques is that the associations across modalities

in the former method are solely based on inter-subject co-

variations whereas the associations in the latter methods are

based on the co-variations as well as statistical independence

among the corresponding spatial and temporal associations.

While statistical independence may be a reasonable assump-

tion to detect a network of areas linked by a particular func-

tion, the ICA algorithms may not be able to satisfy both these

constraints and may end up achieving a tradeoff solution be-

tween the two constraints. Relaxing the independence crite-

rion may enable multimodal-CCA to explore the connectiv-

ity between different networks of functional areas associated

with both hemodynamic response and electric potential.

In this paper, we investigate the performance of mCCA

on both simulated as well as actual data and compare it to that

of joint-ICA (jICA). The results demonstrate the promising

potential of application of mCCA to multimodal fusion.

2. MULTIMODAL-CCA FOR DATA FUSION

In this section, we explain the generic data model, assump-

tions, and steps involved in mCCA while the specifics for the

fMRI and EEG data sets used in our experiments are given

in Section 3. As mentioned in the previous section, in order
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Fig. 1. Data model for mCCA and jICA

to employ an additional dimension of coherence, our scheme

utilizes lower dimensional features of interest. We develop

the following generative model for data fusion.

Given two feature subdatasets X1 and X2, we seek to de-

compose them into two sets of components, C1 and C2, and

corresponding modulation profiles (inter-subject variations),

A1 and A2. The connection across the two modalities can be

evaluated based on correlations of modulation profiles of one

modality with those of the other. If the modulation profiles

are uncorrelated within modalities, each component can be

associated with only one component across modalities. This

one to one correspondence aids examination of associations

across modalities. The generative model is then given by

Xk = AkCk, for k = 1, 2

where Xk ∈ R
s×vk , Ak ∈ R

s×d, and Ck ∈ R
d×vk , vk is

the number of variables and s is the number of observations

in Xk and d is the min(rank(X1,X2)). As per the model,

the modulation profiles, A1n and A2n (n = 1, . . . , d) are

assumed to have the following constraints:

E[A1i,A2
T
i ] ≥ 0 (1)

E[A1i,A2
T
j ] = 0, for i �= j (2)

E[Aki,Ak
T
j ] = 0, for i �= j, k = 1, 2 (3)

We propose to use CCA, which is a statistical tool for

identifying linear relationships between two sets of variables

[6], to determine the inter-subject co-variances. CCA seeks

two sets of transformed variates such that the transformed

variates assume maximum correlation across the two datasets,

while the transformed variates within each data set are uncor-

related. CCA solves the following maximization problem:

max
P,Q

corr(PXT
1 ,QXT

2 ) =
PRX1,X2Q

T

√
(PRX1PT )(QRX2QT )

where P ∈ R
d×v1 and Q ∈ R

d×v2

to obtain canonical variates given by

AT
1 = PXT

1 and AT
2 = QXT

2

which satisfy the constraints given in Eqs. (1)–(3). Hence, P
and Q are the eigenvectors of the two matrices

(R−1
X2

RX2,X1R
−1
X1

RX1,X2 − rI)P = 0

(R−1
X1

RX1,X2R
−1
X2

RX2,X1 − rI)Q = 0

where r is vector of eigenvalues or squared canonical corre-

lations. RX1,X2 is the cross-correlation matrix of X1 and X2

(RX2,X1 = RT
X1,X2

), and RX1 and RX2 are the autocor-

relation matrices of X1 and X2 respectively. Thus, mCCA

models the inter-subject covariations as the canonical covari-

ates obtained by CCA and the least squares approximations

of the components are given by

Ĉk = (AT
k Ak)−1AT

k Xk, for k = 1, 2.

In Fig. 1, we compare the model of mCCA to that of jICA

[4]. The main difference between the two models is that jICA

assumes a common set of modulation profiles for both modal-

ities and imposes an independence constraint on the compo-

nents. Additionally, jICA does not impose any uncorrelation

constraint among the modulation profiles. Hence, jICA exam-

ines the common connection between independent networks

in both modalities while mCCA allows for common as well

as distinct components and describes the level of connection

between the two modalities.
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3. EXPERIMENTS

We perform experiments on both simulated data as well as

actual fMRI and EEG data to evaluate the performance of

mCCA and compare it to jICA. In this section, we describe

the procedure, data sets and results.

3.1. Dimension reduction

For both fMRI and ERP data, the number of variables in the

feature datasets are much larger than the number of observa-

tions. Transforming each set of features to a subspace with

smaller number of variables helps reduce any redundancy in

the analysis. Dimension reduction is performed on the fea-

ture dataset using singular value decomposition (SVD). SVD

of X1 and X2 is given by

Xk = EkDkFk = [E
′
kE

′′
k ]DkFk, for k = 1, 2.

where E
′
1 and E

′
2 contain the eigenvectors corresponding to

the significant eigenvalues in D1 and D2 respectively. We

perform CCA on the dimension-reduced datasets given by

Yk = XkE
′
k, for k = 1, 2.

3.2. Simulated data

For brain imaging data, there is no a priori knowledge about

the ground truth of the underlying components and their mod-

ulation profiles across subjects. Hence, in order to test the

performance of mCCA, we generate a simulated fMRI-like

set of components and an ERP-like set of components and

mix each set with a different set of modulation profiles to ob-

tain two sets of mixtures. For the ERP data set, we use the

peaks of the actual ERP time course from the data described

in the section 3.3. The modulation profiles are chosen from

a random normal distribution. The profiles are kept orthogo-

nal within each set. Connections between the two modalities

are simulated by generating correlation between profile pairs,

formed across modalities.

We simulate five fMRI and five ERP components. Each

simulated fMRI component is a 60 × 60 pixel image with a

200-subject modulation profile. The image is then reshaped

to form a vector by concatenating columns of the image. Each

ERP component is 451 time point segment with a 200-subject

modulation profile. We evaluated the performance of mCCA

for a number of different connections strengths and chose an

example that demonstrates its representative performance. In

the example presented in this paper, the connection between

the profiles of the five fMRI components and the five ERP

components is 0.9, 0.7, 0.4, 0.25, and 0, respectively. The

results are an average of twenty runs, each with independent

realizations of the modulation profiles. The criteria we use for

performance evaluation are the correlations between the true

and estimated components and profiles as well as the differ-

ences between the actual and estimated connection strengths.

Fig. 2. Correlation with ground truth of components and pro-

files as estimated by mCCA (∗) and jICA (◦)

Figure 2 (c) and (d), shows that the profile correlation val-

ues are higher for mCCA than for jICA. Joint-ICA estimates

a common set of modulation profiles instead of a different

set for each modality. In Fig. 2 (a) and (b), the component

correlation values of both mCCA and jICA are quite simi-

lar for the first three components. These three components

have a considerable amount of correlation between profiles

of the two modalities (0.9, 0.7, and 0.4) and thus, a common

profile estimated by jICA, that forms a tradeoff between the

actual separate profiles, suffices to efficiently estimate these

components. However, when the connection between the two

modalities is weak, the common profile departs further from

the ground truth as seen in Fig. 2 (c) and (d), in the case of

components 4 and 5, which have connection strengths of 0.25

and 0, respectively. Consequently, in Fig. 2 (a) and (b) we see

that components 4 and 5 as estimated by mCCA are closer to

the ground truth than the ones estimated by jICA. The con-

nection strengths estimated by mCCA are found to be exact

upto one decimal place.

In another simulation case, when the connection strengths

are selected to be very close to each other the performance of

mCCA degraded and was similar to that of jICA (results not

displayed due to space restrictions). For eigen-analysis based

solutions, identical eigenvalues are known to pose problems

and further investigation needs to be performed to analyze this

problem. Next we discuss the experiment on actual data.

3.3. Actual data

FMRI and EEG data are acquired from 39 subjects (23

healthy and 16 schizophrenic subjects) performing an au-

ditory oddball (AOD) task that requires the subjects to press a

button when they detect a particular infrequent sound among

three kinds of auditory stimuli. Details of the task design and

the participants are given in [7]. Both the fMRI and EEG data

are processed into lower dimensional features using existing

analysis techniques. We use the Statistical Parametric Map-
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Fig. 3. Pair of associated components estimated by mCCA

ping software package (SPM2) [8] to obtain target related

features for fMRI data. For EEG features, ERPs are calcu-

lated by averaging epochs of EEG, time-locked to the event

of correct target detection.

A number of strong connections are identified by mCCA,

three of which have modulation profiles that are significantly

different (α ≤ 0.05) between healthy and schizophrenic treat-

ment groups. We report the results for these three pairs of

components. One of these pairs of components, having a con-

nection strength given by 0.85, is displayed in Fig. 3. The

fMRI component shows activations in the temporal lobe and

the middle anterior cingulate region and the EEG component

shows a maximum peak at around 300 msec (N2) after the

stimulus onset. This is similar to the result obtained in [9]

using jICA on a similar dataset. Another pair of components,

having a connection strength of 0.66, also shows activation

in the motor areas and the bilateral temporal lobe to be as-

sociated with the N2 peak. The final pair of components of

interest shows significant differences in treatment groups for

only the EEG component and not the fMRI component. This

finding is not possible with jICA since it uses a common pro-

file and it is quite plausible that for this particular compo-

nent pair, fMRI is not sensitive to the differences in controls

and patients. The association for this pair is obtained as 0.58.

The fMRI component shows temporal lobe areas and the EEG

component shows the P3A peak (early part of P300).

4. DISCUSSION

In this paper, we have introduced mCCA for fusing two

modalities and demonstrated its usefulness on fMRI and

EEG data. Multimodal CCA seeks spatial areas of the brain

associated with temporal portions of the bioelectric poten-

tials and utilizes the correlation between the corresponding

inter-subject variations to identify these connections.

Our experiments show that mCCA correctly identifies and

quantifies associations between two modalities in a simulated

environment. Multimodal CCA yields similar performance

as jICA when the connections are strong and yields better

performance for weak connections. This is because mCCA

identifies separate inter-subject variations as opposed to jICA

which assumes identical modulation profiles for both modal-

ities. The assumption of separate modulation profiles is less

stringent and also facilitates the quantification of the strength

of connections between two modalities. Another difference

between the two methods is that jICA constrains the compo-

nents to be independent while mCCA does not impose any

constraints on them. Hence, mCCA identifies different net-

works of areas that are similarly modulated across subjects

while jICA identifies independent networks. On the other

hand, mCCA requires the modulation profiles to be uncor-

related within each modality. This makes it easier to examine

associations since each component from one modality can be

linked to only one component in the other modality. Joint-

ICA does not impose any constraints on the profiles. Thus, the

two methods are complementary, though it is advantageous

not to assume a shared profile for two modalities.

Our experiments demonstrated the usefulness of mCCA

to examine linear associations between fMRI and EEG data.

An interesting direction for future research would be to ex-

amine higher order connections through non-linear CCA and

also, to investigate the performance of mCCA to other modal-

ities of complementary nature.
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