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ABSTRACT
Segmentation and motion estimation from cardiac images are

usually considered separately, yet they can obviously benefit

from each other. In this paper, we propose a joint segmenta-

tion and motion estimation algorithm for the purposes of my-

ocardial deformation analysis and strain estimation. We use

segmentation as a guide for selecting feature points with sig-

nificant shape characteristics, and invoke a Generalized Ro-

bust Point Matching (GRPM) strategy with Boundary Ele-

ment Method (BEM)-based regularization model to estimate

the dense displacement field and strain map from 3-D cardiac

sequences. Quantitative analysis of the results is performed

in comparison with the displacements found using implanted

markers, taken to be gold standards.

Index Terms— Cardiac Motion Analysis, Cardiac Im-

age Segmentation, Robust Point Matching, Boundary Ele-

ment Method

1. INTRODUCTION

Quantitative analysis of left ventricular (LV) deformation at

rest and during stress from noninvasive imaging sequences

can detect ischemic disease in patients and offer important di-

agnostic information. There have been a number of efforts

in LV deformation analysis [1, 2, 3, 4], of which one impor-

tant category is to use shape-based tracking algorithm to find

the correspondence of the endocardial (ENDO) and epicar-

dial (EPI) borders in two adjacent frames, followed by the

dense correspondence interpolation within the myocardium

using a biomechanical model. To find the ENDO- and EPI

boundaries, Shi used the manual segmentation of the endo-

cardium and epicardium by experts [1]. Lin eliminated the

need for manual segmentation by using a Canny edge detec-

tor for rough segmentation, followed by the Generalized Ro-

bust Point Matching (GRPM) algorithm to find feature point

correspondence [2]. Yan extended their work by introducing

the Boundary Element Method (BEM) that greatly improves

the computational efficiency of the biomechanical model [3].

One of the limitations of these techniques is the lack of

an automatic and robust method for segmenting the ENDO-
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and EPI boundaries. There has been some limited work on

joint LV segmentation and motion estimation. For example,

Zhuang proposed a biomechanical model-based method that

performs simultaneous LV segmentation and motion estima-

tion [5].

In this paper, we propose an integrated LV segmentation

and motion estimation algorithm that uses segmentation as a

guide for feature extraction and performs motion estimation

directly from intensity images. We do not use segmented

boundaries themselves to estimate displacements, thus re-

ducing the dependency on the accuracy of the segmentation.

We formulate our approach in a recursive Bayesian frame-

work that segments the myocardium, extracts feature points

from the narrowband of segmented contours, and estimates a

dense displacement field within myocardium using the BEM-

GRPM algorithm [3]. The estimated displacement field is

then used to calculate the myocardial strains over multiple

frames.

2. GENERAL FRAMEWORK

Let I1:t = {I1, I2, ..., It} be a collection of images in a car-

diac sequence, St =
{
S+

t , S−
t

}
be the segmentation at frame

t, where S+
t is the ENDO surface and S−

t is the EPI surface.

Also, we denote Tt as the transformation function that maps

frame t − 1 to t. The goal is to estimate the state (St, Tt) for

each frame t, which can be expressed as:

(
Ŝt, T̂t

)
= arg max

St,Tt

P (St, Tt|I1:t) = arg max
St,Tt

P (St, Tt, I1:t)

= arg max
St,Tt

∫
P (St, Tt, S1:t−1, T1:t−1, I1:t) dS1:t−1dT1:t−1

(a)
= arg max

St,Tt

∫
P (It|St)P (St|S1:t−1)P (Tt|St−1, St, It−1, It)

P (S1:t−1, T1:t−1|I1:t−1) dS1:t−1dT1:t−1

(b)
= arg max

St,Tt

P (It|St)︸ ︷︷ ︸
data adherence

P
(
St|Ŝ1:t−1

)
︸ ︷︷ ︸

shape prior

P
(
Tt|Ŝt−1, St, It−1, It

)
︸ ︷︷ ︸
shape−based displacements

(1)
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where we make three assumptions at step (a) in order to

arrive at a computationally more feasible estimation problem:

• Tt is conditioned only on the nearest image frames and

their segmentations, i.e. P (Tt|St, S1:t−1, T1:t−1, I1:t) =
P (Tt|St, St−1, It−1, It);

• I1:t are mutually independent,

i.e. P (It|St, S1:t−1, T1:t−1, I1:t−1) = P (It|St);

• Given S1:t−1, St is conditionally independent of

transformations and images in previous frames, i.e.

P (St|S1:t−1, T1:t−1, I1:t−1) = P (St|S1:t−1).

Also, we assume at (b) that the distributions of previ-

ous states to be strongly peaked around the maxima of the

respective distributions, i.e. P (S1:t−1, T1:t−1|I1:t−1) =
δ
(
S1:t−1 − Ŝ1:t−1, T1:t−1 − T̂1:t−1

)
, where

(
Ŝi, T̂i

)
=

arg maxP (Si, Ti|I1:i) are the estimates of the segmentation

and deformation obtained in the previous frames, and δ (·) is

the Dirac delta function.

3. DATA ADHERENCE

For each frame t, the entire image is partitioned by S+
t and

S−
t into three regions: LV blood pool, LV myocardium, and

background. The LV blood pool and myocardium are homo-

geneous, and therefore can be modeled with a single proba-

bility density function (pdf). The most common pdf for MR

images is Gaussian distribution which is expressed as

P (It;μl, σl) =
1√
2πσl

exp

{
− (It − μl)

2

2σ2
l

}
(2)

where μl is the mean of Gaussian distribution, and σl is

its deviation. Equation 2 describes the intensity information

for LV blood pool when l = 1, and intensity information for

LV myocardium when l = 2.

The background, however, is inhomogeneous because

it contains more than one tissues (RV blood pool, RV my-

ocardium, and lung air). Here, we use a mixture model and

invoke EM algorithm to fit the background histogram.

P (It;μ3, σ3) =
M∑

k=1

αkP3,k (It; μ3,k, σ3,k) (3)

where M is the number of components, αk is the mixture

proportion of component k that satisfies
M∑

k=1

αk = 1, μ3,k and

σ3,k are the mean and deviation of its component distribution.

For cardiac MR images, we choose M = 3.

Thus, the data adherence term can be defined as follows

logP (
It|S+

t , S−
t

)
=

3∑
l=1

∫
Ωt,l

logP (It;μl, σl) dx (4)

where Ωt,1, Ωt,2, and Ωt,3 denote the LV blood pool, LV

myocardium, and background respectively. The maximiza-

tion of equation 4 can be interpreted as the propagation of S+
t

and S−
t that maximizes the piecewise homogeneities.

4. INCOMPRESSIBILITY CONSTRAINT

We observe that the volume of myocardium is almost constant

during a cardiac cycle [6]. Therefore, we make an assumption

that the volume of myocardium at frame t has Gaussian dis-

tribution N (
V̄t, σVt

)

P
(
St|Ŝ1:t−1

)
=

1√
2πσVt

exp

{
−

(
Vt − V̄t

)2

2σ2
Vt

}
(5)

where Vt =
∫
Ωt,2

dx is the volume of myocardium en-

closed by the ENDO- and EPI surfaces at frame t. Param-

eter V̄t and σVt
can be estimated sequentially using V̄t =

1
t−1

t−1∑
i=1

V̂i and σ2
Vt

= 1
t−1

t−1∑
i=1

(
V̂i − V̄t

)2

.

5. FEATURE EXTRACTION

Our shape-based tracking algorithm requires finding the cur-

vature on the ENDO- and EPI surfaces [1]. While curvature

can be computed from segmented surfaces, the curvature op-

erator is a second-order differential operator which amplifies

the segmentation errors, and hence requiring very accurate

segmentation of the ENDO- and EPI surfaces. An alternative

is to compute scaled isophote curvature from intensity images

in order to reduce the dependency on the accuracy of segmen-

tation [2]. However, isophote curvature could be unreliable at

weak boundaries.

In this paper, we use segmentation to guide the selection

of feature points with accurate curvature. In particular, we

choose our feature points as follows: 1) For each point on the

contour, compute the isophote curvature for all points in its

3 × 3 neighborhood, and select the curvature maxima whose

edge strength ‖∇I‖ is larger than a threshold, called type-1
feature point; 2) If the 3 × 3 block is noisy without strong

edges, use the point on the contour as feature point, called

type-2 feature point; 3) Rank all type-1 feature points accord-

ing to their curvatures in descend order, and discard the lower

1/4 points. In Figure 1, we compare the feature points se-

lected with our approach and Canny edge detector. It can be

seen that sparse feature points are selected when using the

Canny edge detector, especially at epicardium.
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Fig. 1. Comparison of feature points extracted with our ap-

proach (left) and Canny edge detector (right). Red: type-1

feature points; Blue: type-2 feature points.

6. SHAPE-BASED DISPLACEMENT ESTIMATION

Assume that P = {p1,p2, ...,pI} and Q = {q1,q2, ...,qJ}
are two sets of feature points extracted from two adjacent

frames. We use BEM-GRPM algorithm to estimate a dense

field transformation in a deterministic annealing framework.

In particular, we need to maximize the following shape-

displacement term:

P
(
Tt|Ŝt−1, St, It−1, It

)
∝ exp {− (Eshape + γEBEM)}

(6)

Eshape =
I∑

i=1

J∑
j=1

mij

(
‖Tt ◦ pi − qj‖2 + βκg (‖κ (pi)

−κ (qj)‖2
))

+ τ
I∑

i=1

J∑
j=1

mij log mij

+ τ0

I∑
i=1

mi,J+1 log mi,J+1 + τ0

J+1∑
j=1

mI+1,j log mI+1,j

EBEM = ‖L · Tt‖2

where

• βκ is the weight of curvature to proximity information,

and is set to zero for type-2 feature points;

• mij is the correspondence matrix;

• τ is the annealing temperature and τ0 is the annealing

temperature for outliers;

• κ (pi) is a vector composed of two principal curvatures

at pi, and κ (qj) is similarly defined;

• g (·) is a strictly increasing function;

• L (·) is an operating function on the non-rigid trans-

form Tt. Here, we used BEM-based regularization

model for Tt.

7. OPTIMIZATION

The optimization of St and Tt from equation 1 can be

achieved sequentially by repeating the following two steps:

• S-step Fix motion estimation and update segmentation,

i.e. Ŝt = arg max
St

P (It|St)P
(
St|Ŝ1:t−1

)
. The opti-

mal Ŝt can be identified by the coupled Euler Lagrange

equations:

∂S+
t

∂υ
=

(
−log

(P (It;μ1, σ1)
P (It;μ2, σ2)

)
− Vt − V̄t

σ2
Vt

)
n+

t

∂S−
t

∂υ
=

(
−log

(P (It; μ2, σ2)
P (It; μ3, σ3)

)
+

Vt − V̄t

σ2
Vt

)
n−

t

where υ is the time step used to solve the partial differ-

ential equations, and n+
t and n−

t are the normals of S+
t

and S−
t respectively.

• T-step Fix segmentation and update motion estima-

tion, i.e. T̂t = arg max
Tt

P
(
Tt|Ŝt−1, St, It−1, It

)
.

The optimal Tt can be obtained using BEM-GRPM

algorithm [3].

1. Estimate the correspondence matrix mij between

the point pi and qj

mij =
1√

2πτ2
exp

{
−1

τ

(
‖Tt ◦ pi − qj‖2

+βκg ‖κ (pi) − κ (qj)‖2
)}

2. Calculate qj’s correspondent point q̂i =

J∑
j=1

mijqj

J∑
j=1

mij

and the confidence parameters ci =
J∑

j=1

mij ;

3. Find the dense transformation Tt by BEM, i.e.

T̂t = arg max
Tt

I∑
i=1

ci ‖Ti ◦ pi − q̂i‖2+γ ‖L · Tt‖2
;

4. If τ ≥ τthreshold, then τ = τ · δ and go to step 1.

The whole scheme is initialized with the manual segmen-

tation in the first frame, and then use the results from the pre-

vious frame to initialize the current frame. Due to similarity

to two adjacent frames, it takes around 30 sec to segment one

3-D frame, and 1 min to find the dense correspondence be-

tween two 3-D frames.
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8. EXPERIMENTS

In this section, we present validation of results on 12 ca-

nine MR sequences, which have 16 temporal frames per car-

diac cycle [1], with an in-plane resolution of 1.6mm and a

slice thickness of 5mm. Figure 2 shows the estimated dense

displacement field within myocardium. To further quantita-

tively evaluate our algorithm, we define the displacement er-

ror for point i as
∣∣∣di − d̃i

∣∣∣, where di is the estimated dis-

placement and d̃i is the ground truth displacement from the

implanted marker [1]. Figure 3 shows the displacement er-

rors during cardiac systole for one cardiac sequence. Table 1

shows the mean and variance of the displacement errors over

12 sequences. It can be seen that while error propagation ex-

ists for all three methods, less error is propagated when the

segmentation-guided isophote curvature is used. Also, the

variance of displacement errors is reduced, which implies the

improvement of robustness for motion estimation.

Fig. 2. The short-axis

view of the dense dis-

placements derived from

our approach.

Fig. 3. Comparison of dis-

placement errors during ven-

tricular systole for one cardiac

sequence.

Table 1. Comparison of displacement errors over 12 cardiac

sequences.

Displacement Error(pixels)

isophote curvature+

segmentation 1.11 ± 0.05
isophote curvature 1.40 ± 0.09

geometric curvature 1.45 ± 0.08

In Figure 4, we show the temporal development of radial

and circumferential strains from End-Diastole (ED) to End-

Systole (ES) for one 3-D sequence. Note the normal behavior

in the left ventricle, showing the positive radial strain (thick-

ening) and negative circumferential strain (shortening) during

cardiac systole.

9. CONCLUSION

In this paper, we have presented a joint segmentation and mo-

tion estimation algorithm to recover LV deformation. We

rr
E

cc
E

ED ES

Fig. 4. The development of radial(top) and circumferen-

tial(bottom) strains in the left ventricle. The strain patterns

are shown at 1/4, 1/2, 3/4, and 4/4 of time between ED and

ES.

used coupled ENDO- and EPI segmentation as a guidance

to extract robust feature points with significant shape char-

acteristics, and then fed them into BEM-GRPM algorithm to

estimate a spatially dense myocardial displacement field and

strain map. Future work includes the extension to echocardio-

graphic images where phase-sensitive speckle can be used as

a complementary motion information for mid-wall tracking.

Also, tissue modeling with more complicated biomechanical

models will be considered.
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