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ABSTRACT

Deformable model based segmentation usually relies on a

force field extracted from the image data through the compu-

tation of image gradient or gradient vector flow. At conver-

gence, the work of the forces at the interface location should

annihilate. This condition is not met in classical deformable

formulations. In order to insure this condition, we previously

introduced a constrained problem and a nonlinear approach in

the framework of a deformable elastic template. From a com-

putational point of view, theses two approaches can be very

time consuming. Therefore, we propose in this paper a new

simpler formulation using a singular perturbation technique.

The nice behavior of the proposed model is demonstrated

in the context of the segmentation and tracking of the heart

contours in 2D cardiac MRI sequences.

Index Terms— Deformable model, singular perturbation

method, segmentation tracking, cardiac image sequences

1. INTRODUCTION

Image segmentation is the process that extracts meaningful

parts from images for further exploitation and quantification.

Still, there is no universal approach to the problem. It is

clear however that a priori information related to the partic-

ular context is needed to particularize any generic segmenta-

tion method. Deformable models is a class of methods that

has received a lot of attention in the past. They rely on a
priori reference shape model of the structure to be extracted

that is iteratively adapted to the image data. The adaptation

process is usually driven by a force field issued from the im-

age through the computation of image gradient or gradient

vector flow [1]. In this paper, we consider the segmentation

and tracking of soft structures in image sequences. Our ap-

plicative context more specifically concerns the extraction of

the heart interfaces in Magnetic Resonance Image (MRI) se-

quences. At convergence, the cumulative force on the con-

tours should approach zero. However, this is not achieved

in classical deformable model formulations. To this aim, we
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previously introduced a constrained linear/non linear elastic

deformable template [2],[3]. In order to speed up this, some-

times time consuming approach, we propose in this paper

a simpler formulation based on a singular perturbation ap-

proach which is particularly suited for segmentation tracking

in image sequences.

2. METHODS

2.1. The Deformable Elastic Template

Our method is based on the Deformable Elastic Template
(DET) method introduced by Pham [4],[2] and later improved

by Rouchdy [3]. A DET is a combination of :

• A topological and geometric model of the object to be

segmented.

• A constitutive equation (elasticity) defining its behav-

ior under applied external image forces that pushes the

model’s interfaces towards the image edges.

The equilibrium of the model is obtained through the min-

imization of the following global energy functional :

E(v) = Eelastic(v) + Edata(v)

where Eelastic represents the deformation energy of the

model, Edata is the energy due to the external image forces

and v is the displacement. Let Ω0 be the initial config-

uration of the elastic template, the deformation ϕ is de-

scribed by the Green-Lagrange strain tensor which is lin-

earized under the small deformation assumption. We de-

note by ε(v) = 1
2 (∇v + ∇vT ) the strain tensor and by

σ(v) = λTr(ε(v))II + 2με(v) the stress tensor as a function

of the displacement v. The coefficients λ and μ stand for the

Lamé coefficients (see [5]). The external energy is defined as

work produced by the force field f due to the deformation.

We denote by H1(Ω0) the classical Sobolev space of func-

tions in L2(Ω0) with a derivative in distributional sense in

L2(Ω0).

H1(Ω0) = {ϕ ∈ L2(Ω0); Dϕ ∈ L2(Ω0)}
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(see [5]) and we set H =
(
H1(Ω0)

)3
.

Let R be the subspace of rigid motions, which is defined

as the kernel of the strain tensor: R = Ker ε, set IH =(
H1(Ω0)/R

)3

the displacement space, equipped with the

semi-norm ‖ε(v)‖L2(Ω0) which, thanks to the Korn inequal-

ity, is a Hilbert space. The following hypotheses for the field

f are convenient for analyzing the asymptotics.

• H1: The function f is defined on O ⊃ Ω0, and f is

Lipschitz on O with values in IR3. Furthermore, there

exists F : IR3 → IR+ verifying −DF(x) = f(x).

The optimality conditions associated to minimizing E(v) on

IH read: find the displacement u ∈ IH verifying:

{ −div(σ(u)) = 0 in Ω0;
σ(I + u) · n = f(I + u) on ∂Ω0.

(1)

Note that u �= 0 ⇒ f(I + u) �= 0, so forces cannot be null at

the solution with this formulation.

2.1.1. The Quasi-Static Lamé System

The problem (1) is nonlinear, thus for computing an approxi-

mation with a finite element method, for example ([4]), quasi

static or Picard fixed point strategies can be used: find t 	→
v(t) verifying:

⎧⎨
⎩

d
dtv(t) − div(σ(v(t))) = 0 in Ω0 for 0 < t;
σ(I + v(t)) · n = f(I + v(t)) on ∂Ω0;
v(0) = 0;

(2)

or, for wn given, compute wn+1 solution to:

{ −div(σ(wn+1)) = 0 in Ω0;
σ(I + wn) · n = f(I + u) on ∂Ω0.

(3)

Then u is defined by u = limt→∞ v(t); u = limn→∞ wn.

2.2. Singular Peturbation Technique

Let us introduce a function α satisfying:

• H2: The function α : IR+ → IR+ is regular, integrable

over IR+, non increasing and bounded from below on

any compact subset of IR+ with limt→∞ α(t) = 0.

We have:

Theorem 1 Assume hypotheses H1 and H2 satisfied. Then
for all 0 < t < T , the following problem
⎧⎨
⎩

d
dtu(t) − div(α(t)σ(u(t))) = 0 in Ω0;
α(t)σ(u(t)) · n = f(I + u(t)) on ∂Ω0;
u(0) = 0 in Ω0.

(4)

has a unique solution u ∈ L2(0, T ; ((H2(Ω))3 ∩ IH) ∩
C0(0, T ; IH); d

dtu ∈ L2(0, T ; H2(Ω0))3)

For Problem (4), the asymptotic behavior with respect to time

is given in the next theorem.

Theorem 2 Assume hypotheses H1 and H2 satisfied. Then,
u(t) solution to (4) converges towards u ∈ IH solution to

f(I + u) = 0 on ∂Ω0. (5)

Proof. Let us give a sketch of the proof. Define the bilin-

ear symmetric form a(·, ·) associated to the linear elasticity

operator by

a(v, w) = α(t)
∫

Ω0

μ(∇v/∇w) + (λ + μ)divvdivw dx.

Multiply Equation (4) by d
dtu and integrate over Ω0. After

some classical calculations, we get:

‖ d

dt
u(t)‖2

L2(ω0)
+

α(t)
2

d

dt
a(u(t), u(t)) = −

∫
∂Ω0

d

dt
F(u(t)) dξ.

(6)

For all 0 < t < T , by integrating by parts the second term,

we get:

∫ t

0
‖ d

dsu(s)‖2
L2(ω0)

ds − ∫ t

0
α′(s)

2 a(u(s), u(s)) ds+
α(t)
2 a(u(t), u(t)) +

∫
∂Ω0

F(u(t)) dξ =
∫

∂Ω0
F(0) dξ.

(7)

We deduce the existence of two time-independent constants

C1 and C2 such that:

‖ d

ds
u(s)‖2

L2(0,t;(L2(ω0))3
≤ C1; ‖

√
α(t)u(t)‖2

(H1(ω0))3
≤ C2.

We conclude that up to a zero measure subset, d
dtu(t) goes to

zero when time goes to infinity. Moreover, by considering a

variational formulation of Problem (4), we have for all ϕ ∈
(H1(Ω0))3:

| ∫
∂Ω0

f(I + u(t))ϕ dξ| ≤ | ∫
Ω0

d
dtu(t)ϕ dx|+√

α(t)a(
√

α(t)u(t), ϕ).
(8)

The right hand side of the previous expression goes to zero

when t goes to infinity. Since u(t) converges towards u and

since f is continuous, we conclude that

lim
t→∞ f(I + u(t)) = 0 on ∂Ω0.

�

2.3. Numerical implementation

We implemented the previously described technique using the

finite element method for discretizing the spatial functions,

and a simple Euler scheme for time integration. In our im-

plementation, we used α(t) = e−βt. In the finite element

formulation, problem (4) becomes:
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Uλ − Uλ−1

Δλ
+ e−βtKUλ = F(Uλ−1)

or (
Δλe−βtK + I

)
Uλ = ΔλF(Uλ−1) + Uλ−1

where F is the vector of forces sampled at the mesh con-

trol points, K is the stiffness matrix corresponding to the elas-

ticity operator, Δλ is the integration time step and U is the

displacement vector (displacement of mesh node points). β
should be chosen so that the exponential varies slowly com-

pared to F(U), and thus depends on the lipschitz constant of

the force field.

3. EXPERIMENTS ON CARDIAC IMAGE
SEQUENCES

In order to test the model on real data, we used the publicly

available 4D heart database [6]. This database is composed

of cardiac MR images of 18 patients, together with two ex-

pert segmentations at end-diastole and end-systole. A short

axis slice sequence, corresponding to a median heart level,

has been extracted from one patient set.

The initial shape of the model used to extract the left ven-

tricular (LV) contours from the 2D image sequences was sim-

ply a ring. Indeed, the shape of a short axis slice of the my-

ocardium in healthy patients is very close to a perfect ring.

This ring was meshed with a very simple method : first di-

vide the ring into quadrangles using sectors and concentric

rings, then divide each quadrangle into two triangles. Better

meshing methods could of course be used, but the triangles

generated by our simple method proved good enough for this

application.

Since the method ensures that f(I + v) = 0 at conver-

gence, we are guaranteed that the contours of the model will

match the zeros of the force fields, that is to say, the contours

extracted by a low-level preprocessing method. This is very

interesting when confidence in these contours is high but can

be a problem when they are noisy.

We illustrate the presented method in two cases : first, the

classical context of image segmentation using a GVF with a

Canny contour map (fig 1 (b)). In this case, the initial contours

are quite noisy. The results show that the proposed method

can still be used, however, provided that there is good con-

trast.

Fig 1 (c) shows the results using a very good pre-

segmentation step using topological watersheds, as described

in [7]. In this case, we have high confidence in the con-

tours and the model is used to estimate motion inside the

myocardium rather than only extract contours. In this case,

the segmentation is good and the estimated motion is smooth

and should be realistic (at least in the radial direction), since

the motion is the solution of an elasticity problem and models

the myocardium quite well.

Fig. 1. Result of the constrained deformation of the de-

formable model on a 2D cardiac MR image slice (mid-

systole): (a) initialization, (b) result with GVF force field,

(c) result with morphological pre-segmentation

The singular perturbative method introduced in this paper

can be applied straightforwardly to the dynamic elastic model

introduced in [8]. Fig 2 shows the results of the constrained

dynamic model on the whole cardiac sequence, for the same

2D slice shown in Fig 1, using the watershed contour extrac-

tion described above.

Computation times using the singular perturbation tech-

nique are similar to what is observed with the normal De-

formable Elastic Template: less than a minute is needed to

analyze a 2D+t MRI sequence on a standard PC with a Python

language implementation of the model.
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Fig. 2. Results on a dynamic sequence. t=0 corresponds to end-diastole.

4. CONCLUSIONS AND PERSPECTIVES

We have presented a novel algorithm for the constrained seg-

mentation problem with the DET. This algorithm is proved

to converge towards a solution of the continuous problem (1)

and to impose the condition f(I + v) = 0. It is to our knowl-

edge the first one to yield an elastic solution while imposing

this condition. Such a constraint is particularly useful when

the force field is of good quality, and extends the domain of

application of the DET.
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