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ABSTRACT

This paper presents a novel method for the construction of
endocardial and epicardial surface models from 3D short-axis
cardiac magnetic resonance images with strongly anisotropic
voxels in the long-axis direction. The same algorithm is
independently used to generate the surface meshes of the
epicardium and endocardium of the four cardiac chambers.
The proposed method provides smooth meshes of the heart
chambers despite the strong voxel anisotropy. This is not
the case for the marching cubes algorithm. Furthermore, the
presented method generates more regular mesh triangles than
the marching cubes and allows for a complete control of the
number of triangles. However, the generated surface meshes
are still close to the ones obtained by the marching cubes.
For the five tested cases, the average distance between the
surfaces generated by our method and by the marching cubes
algorithm was 0.4 mm.

Index Terms— Surface generation, Cardiac MRI.

1. INTRODUCTION

Surface models of the heart are used for visualization and
modeling (e.g. FEM) purposes. A popular approach for
constructing such models is to apply the marching cubes
algorithm [1] to segmented cardiac magnetic resonance im-
age (MRI). However, cardiac MRI typically has strongly
anisotropic voxels. The voxel size in one direction is usually
at least five times larger than in the other two directions. A di-
rect consequence of the voxel anisotropy is that the marching
cubes algorithm generates a mesh with pronounced steps and
elongated triangles, as shown in Fig. 1. The mesh obtained
by the marching cubes can be significantly smoothed. How-
ever, the smoothing of the mesh shrinks it, which makes it a
less accurate representation of the chamber surface. Here, we
present a new method for the generation of a four-chamber
surface model from segmented cardiac MRI, which generates
smooth meshes of the heart chambers despite the strong voxel
anisotropy of the 3D images.

Fig. 1. A left ventricular surface model generated by applying
the marching cubes algorithm to segmented cardiac MRI.

2. METHODS

2.1. Motivation

The input to the method is the segmentation of each of the
four cardiac chambers. The same algorithm is independently
used to generate the surface mesh of the epicardium and of
the endocardium of the four cardiac chambers. A number of
algorithms have been designed to construct a regular triangu-
lated surface mesh on a sphere [2]. The number of vertices
and triangles of the mesh can be specified. The main idea
of the method is to propagate in a one-to-one and continu-
ous (i.e. homeomorphic) manner the mesh from the sphere to
the cardiac chamber. A mesh is constructed on a sphere that
is centered at the barycenter of the chamber and includes the
chamber. We use an approach based on the Laplace equation
to propagate the mesh from the sphere to the cardiac chamber
for the following reasons. If we consider a flow field � trans-
porting particles between two surfaces

�
and � , the homeo-

morphic condition requires a potential flow, i.e. the flow field
can be expressed as the gradient of a scalar potential � , where
� 
 � � . If the medium is assumed to be incompressible, the
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flow field � must be divergence free, i.e. � � � �
. This condi-

tion leads to � � � �
, which is the Laplace equation. Solving

the Laplace equation between the surfaces
�
and � will lead

to a one-to-one correspondence between the two surfaces fol-
lowing the direction of the gradient of � . Some research ef-
forts have also used the Laplace equation for colon surface
flattening [3], thickness measurement [4, 5], and local shape
variability measurement [6].

2.2. Mapping of the Sphere to the Cardiac Chamber Sur-
face

2.2.1. Harmonic function with a spherical isolevel and a sin-
gle singularity

We first derive the solution to the Laplace equation over a
spherical domain that has a singularity somewhere within the
domain and that is equal to a constant on the boundary of
the domain. Let the sphere center be the coordinate system
origin, � denotes the radius of the sphere, � the location of
the singularity, and � the independent variable. The solution� 	 � � � needs to satisfy the following:
 � �� � � � 	 � � � � � � (1)

� 	 � � � � � � �  " � � � (2)# � 	
� � %

(3)

The fundamental solution of the Laplace equation in 3D is &� � �
and it represents a singularity at the origin. The fundamental
solution centered at � , i.e. function &� � ( � � , satisfies Eqs. 1 and
3 but it does not satisfy the boundary condition Eq. 2. It turns
out that the sum of two shifted fundamental solutions, one
centered at � and one centered at � " +� � � + and multiplied by , "� � � ,
satisfy Eqs. 1, 2, and 3. Note that the second singularity is
outside the sphere, i.e. there is only one singularity within the
spherical domain. The solution is:

� 	 � � � �
-

� � , � � , �� � �
-

� � , � " +� � � + � %
(4)

It is straightforward to show that Eq. 4 satisfies Eqs. 1, 2, and
3. Also

� 	 � � � 3 �
when � � � 5 � , � 	 � � � � �

when � � � � � ,
and

� 	 � � � 5 �
when � � � 3 � .

2.2.2. Potential between the sphere and the cardiac chamber

Let � 9 , : � - � % % % � < represent the locations of < singu-
larities. We represent the potential as a sum of the functions
defined by Eq. 4:

�
� � � � >

?@
A  &

� � C � � � %
(5)

Note that � � � �
, �

� � � � �
on the sphere (i.e. when� � � � E ) and that there are M singularities centered at � 9 .

Let � F , G � - � % % % � I represent the boundary points of the car-
diac chamber. The goal is to fit the boundary of the cardiac
chamber to an isolevel surface equal to one. The fitting is
performed in the least squares sense. Therefore the objective
function to be minimized is:

J
�

-K M@
N  &

O
�

� � F � , - Q S %
(6)

The constant > is obtained by solving the equation T VT W � �
.

The solution is:

> � X MN  & Z N
X MN  & Z SN � (7)

where Z N � X
?A  & � A � � F � . Thus, the potential � defined in

Eq. 5 satisfies the Laplace equation, has an isolevel equal to�
on the sphere and an isolevel equal to

-
that is close to the

boundary of the cardiac chamber.

2.2.3. Surface mesh of the cardiac chamber

We want to propagate the mesh vertices from the sphere (i.e.
isolevel

�
) to the boundary of the cardiac chamber along the

gradient of � . Thus, we need to determine when to stop the
propagation, which corresponds to finding the final value of
the potential for each mesh vertices of the sphere. To do so,
we first propagate the points of the chamber boundary � F to
the sphere along the negative gradient of � by using the fol-
lowing partial differential equation:

T � \ ] _T ] � , � �
� � � ` � � �� � � � � � F % (8)

We use the fourth-order Runge-Kutta numerical method [7]
to propagate the points numerically. We stop the propagation
when the points reach the sphere, i.e. when their potential
become

�
.

Then, for all the chamber boundary points, we compute
their potential values �

� � F � and we assign them to the corre-
sponding points on the sphere c N obtained by the propagation.
We use a pseudo-thin plate spline on the sphere [8] to interpo-
late those potential values and obtain the potential values on
the cardiac chamber boundary d � e � :

d � e � � f h j@
k  &

l k n � e p q r � � (9)

where c is the point on the sphere where we want to obtain
the potential value, s are the number of control points on the
sphere used for the interpolation, t k are the unit vectors of
the control points from the center of the sphere, n is a func-
tion given in [8], and f and l k are constants to be computed.
We determine the constants f and l k such that the potential
values of all the chamber boundary points �

� � F � are fitted to
the least squares sense. Note that we want to use a relatively
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small number of control points, i.e. the number of boundary
points � is much larger than the number of control points � .
The fitting of the chamber boundary points is expressed by:

� � � � � � �

� 	 � � 
 (10)

which corresponds to the following matrix system:�������
�

� � � 	 � 
 � � � � � � � � 	 � 
 � � �� � � 	 � 
 � � � � � � � � 	 � 
 � � ����� � � 	 ! 
 � � � � � � � � 	 ! 
 � � �

' ((((((
)

* + - ./

�������
�

01 2���1 4

' ((((((
)

* + - .5

6

�������
�

7 � 8 � �
7 � 8 � ����

7 � 8 ! �

' ((((((
)

�

* + - .=
(11)

The corresponding least squares solution is:
>

�

� @ B @ � � � @ B E �
(12)

Thus, for any point on the sphere
�
, we can obtain a potential

value that corresponds to the potential limit on the cardiac
chamber boundary � � � � for the propagation along the gradient
of � .
Finally, to propagate the mesh vertices

� F
from the sphere

to the cardiac chamber boundary, we use the same propaga-
tion method given by Eq. 8 but in the opposite direction. We
stop the propagation when we reach the corresponding poten-
tial values � � � F � .

3. RESULTS

The method has been tested on five different cases for all the
chambers: left ventricle (LV), right ventricle (RV), left atrium
(LA), right atrium (RA). The singularities are placed auto-
matically inside the segmented chamber. Fig. 2 illustrates
the singularity locations for RV. The number of singularities
for each chamber is reported in Table 1. We use the same
number of control points for the interpolation on the sphere
as the number of singularities, i.e. � � � . Figs. 3 and
4 show the surface meshes of the cardiac chambers generated
by the proposed method. Fig. 5 shows one slice of each of the
segmented chamber with the corresponding surface meshes
generated by the marching cubes algorithm and the proposed
method.
Table 1 provides the average in-slice distance between the

surfaces meshes generated by the marching cubes algorithm
and the proposed method. Those distances are obtained by
manual measurement for all the chambers. The average is
performed over all the slices of each cardiac chamber for the
five cases.

4. CONCLUSION

We developed a newmethod for constructing endocardial and
epicardial surfaces from 3D segmented MRI. The same algo-
rithm is applied independently to each cardiac chamber. A

Fig. 2. Arrangement of singularities for the RV endocardium.
The singularities are placed uniformly inside the segmented
chamber.

Fig. 3. Endocardium surface meshes generated by the pro-
posed method for LV (red), RV (green), LA (blue), and RA
(yellow).

1483



Fig. 4. Epicardium surface mesh generated by the proposed
method for the entire myocardium.

� � � � � �

� � � �
� �

Fig. 5. Contours of the surface meshes generated by the
marching cubes algorithm and the proposed method for (a)
LV, (b) RV, (c) LA, and (d) RA. The red contours correspond
to the proposed method and the yellow ones to the marching
cubes.

Chamber M Distance to
Marching Cubes [mm]

LV endocardium 222 0.4
RV endocardium 208 0.3
LA endocardium 55 0.5
RA endocardium 48 0.4

Myocardium epicardium 436 0.3

Table 1. This table provides for each chamber the aver-
age distance between the surfaces meshes generated by the
marching cubes and the proposed method. The in-plane reso-
lution is 1.44 mm x 1.44 mm.

surface mesh is first constructed on a sphere that includes the
cardiac chamber. The mesh vertices are propagated along the
gradient of a potential that satisfies the Laplace equation. The
resulting surface meshes are smooth despite the strong voxel
anisotropy, which is not the case for the marching cubes al-
gorithm. Furthermore, the presented method generates more
regular mesh triangles than the marching cubes and allows
for a complete control of the number of triangles. For the five
tested cases, the average distance between the surfaces gener-
ated by our method and by the marching cubes was 0.4 mm.
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