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ABSTRACT

Growth and form in biology are often associated with some level of
fractality. Fractal characteristics have also been noted in a number
of imaging modalities. These observations make fractal modelling
relevant in the context of bio-imaging.

In this paper, we introduce a simple and yet rigorous innovation
model for multi-dimensional fractional Brownian motion (fBm) and
provide the computational tools for the analysis of such processes in
a multi-resolution framework. The key point is that these processes
can be whitened by application of the appropriate fractional Lapla-
cian operator which has a corresponding polyharmonic wavelet. We
examine the case of MRI and mammography images through com-
parison with theoretical results, which underline the suitability of
fractal models in the study of bio-textures.

Index Terms— fractional Brownian motion, non-separable
wavelets, whitening, Hurst exponent estimation.

1. INTRODUCTION

This paper addresses the subject of fractal analysis of two- and
higher-dimensional images and datasets obtained in medical and
biomedical imagery. We provide a mathematical framework wherein
the problem can be rigorously formulated, and propose some com-
putational tools for the task, which are based on multi-scale wavelet
analysis.

The relevance of scale-invariance and self-similarity, central to
fractal models, to the study of biomedical and other texture images
has long been recognized [1, 2]. Generally speaking, it can be ar-
gued that anatomical growth processes lead to structures that exhibit
fractal statistics. This has been shown, for instance, in the case of the
vasculature of the brain, where a fractal-like pattern can be identi ed
in the tree structure of the arteries [3, 4]. Additionally, the boundary
between the white matter and the cerebral cortex demonstrate fractal
properties (see for instance Bullmore & al. [5]). Fractal analysis has
also been applied to functional MR images [6]. Other relevant exam-
ples of medical and biomedical fractals include mammograms [7],
bone structure [8], images of the cytoskeleton, and other classes of
bio-textures. In addition, the 1/ωα-like spectral decay that is di-
rectly linked to self-similarity in fractals has also been observed in
uorescence microscopy [9].
These power-law spectra that derive from self-similarity are also

observed in a wide range of other applications and are typically
modelled by fractional Brownian motion (fBm). It is not a coin-
cidence that wavelet analysis has proved useful in the analysis of
fBm (for early examples see for instance Flandrin [10] and Wor-
nell [11]), as wavelet theory is essentially based on the concepts of
multi-resolution and scaling.
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Still, an exact mathematical treatment of fBm and its wavelets
analysis is somewhat evasive, in that useful statistically self-similar
models (fBm in particular) are typically non-stationary, and thereby
the application of the notion of a power spectrum to them requires
caution. To address this issue, we propose a distributional formula-
tion (Section 2), in accordance with Gel’fand and Vilenkin’s theory
of generalized stochastic analysis [12]. This formulation, which
is a multi-dimensional extension of Blu and Unser’s 1-D treat-
ment [13, 14], leads to an innovation model for fractional Brownian
motion, which appears as fractionally integrated white noise.

Next, in order to provide computational tools for the analysis of
such models, we invoke the same notions of self-similarity and scale-
independence to de ne a family of multi-resolution spline spaces
which lead to wavelets that are intrinsically linked to the whitening
operator of multi-dimensional fBm (Section 3). In contrast to the
state of the art in wavelet analysis of fractal images, where sepa-
rable extensions of 1-D estimators are typically used, our construc-
tion allows non-separable analysis on minimally constrained multi-
dimensional lattices.

Finally, as a proof of potential, we employ the introduced ap-
proach, using a quincunx wavelet decomposition as per Van De Ville
& al. [15], to estimate the fractal dimensions of synthesized fBm
samples, as well as those of T2 MRI and mammography images
(Section 4).

2. FRACTIONAL BROWNIAN MOTION

In order to give rigorous sense to power-law spectral models, some
mathematical background is essential.

2.1. Preliminaries

We need a means of characterizing random processes. What we pro-
pose is to use the distributional framework developed by Gel’fand
and Vilenkin [12], wherein a random process X is identi ed by the
joint distribution of its “inner products” with a class of test functions
u ∈ K, that is, the variables

〈X, uk〉, ∀uk ∈ K, 1 ≤ k ≤ N , N ∈ N+.

Such random variables may be regarded as measurements or obser-
vations of the random process X. They are comparable to samples
X(xk), xk ∈ R

d, of the random process considered in the classical
theory.

Given an operator A on K and its adjoint A∗, the application of
A on X is de ned by

〈AX, u〉def
= 〈X, A∗u〉.

Also, the Fourier transform X̂ of X is de ned by the Parseval iden-
tity:

〈X̂, û〉def
= (2π)d〈X, u〉.
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2.2. Characterization of fBm processes

A fractional Brownian motionBH with Hurst parameterH is a zero-
mean nonstationary process that is classically de ned by its vari-
ogram, which describes the variance of its increments:

E
˘|BH(xa) − BH(xb)|2

¯
= σ2‖xa − xb‖2H

2 .

(σ is an arbitrary constant.)
To give a distributional de nition of these processes, we rst

introduce the operator Δ̀−γ and its adjoint Δ́−γ , which, respectively,
are particular left and right inverses of the (normalized) fractional
Laplacian

Δγ F∼ ‖ω‖2γ .

The left and right inverses are de ned in the Fourier domain as fol-
lows:

Δ̀−γf(x)
def
=

(2π)−d

Z

Rd

dω ejxTω
f̂(ω) − P

|k|≤�2γ− d
2 � f̂ (k)(0)ωk

k!

‖ω‖2γ
;

Δ́−γf(x)
def
=

(2π)−d

Z

Rd

dω
ejxTω − P

|k|≤�2γ− d
2 �

j|k|xkωk

k!

‖ω‖2γ
f̂(ω).

It can then be shown that the classical de nition of a fractional
Brownian motionBH is equivalent to the following de nition

BH
def
= ε′HΔ́−H

2
− d

4 W, (1)

which simply states that fBm is obtained by suitable fractional inte-
gration of a white Gaussian noise processW with variance σ2. Here
ε′H is anH-dependent factor given by

ε′2H = −22H+d−1πd/2 Γ(H+
d
2
)

Γ(−H)
.

(The proof is technical and will be published elsewhere [16].) As an
important and immediate consequence we can see that the fractional

Laplacian operatorΔ
H
2

+
d
4 whitens an fBm eld of exponentH , that

is,

Δ
H
2

+
d
4 BH = ε′HW. (2)

The appearance of the Laplacian and its inverses in the de nition
of fBm is not arbitrary, as the fractional Laplacian is practically the
only real convolution operator that exhibits invariance to rotation and
scaling [17, 18].

3. POLYHARMONIC MULTI-RESOLUTION ANALYSIS

The same operators that characterize our stochastic processes of in-
terest can also be used to de ne families of polyharmonic splines
and their corresponding multi-resolution spaces spanned by B-spline

functions distributed over a d-dimensional lattice QZ
d def

= {Qk|k ∈
Z

d}. (Q is the lattice generator matrix.) This is done by de ning
polyharmonic splines as solutions to a fractional Poisson equation
of the following construction:

Δγs(x) =
X

k∈Zd

ckδ(x − Qk).

(δ(·) denotes Dirac’s delta.) Polyharmonic B-splines are particular
solutions of the above equation, with coef cients ck that de ne a
discrete localization lter whose frequency response (denoted V̂λ

Q)
approximates Δ̂γ(ω) = ‖ω‖2γ around 0. Such a lter can be con-
structed by choosing a frequency response of the form

V̂γ
Q(ω) =

h 4

μ2

X
1≤i<N

sin2(
yT

i QTω

2
)
iγ

,

where the multi-integer vectors y1, . . . , yN ∈ Z
d are such that the

(compulsorily linearly independent) vectors Qy1, . . . , QyN gener-
ate the lattice QZ

d and form a tight-frame for R
d with frame con-

stant μ2. A convolution of such a lter with an invertible stable lter
also provides an acceptable localization.

The above formulation results in the following Fourier domain
de nition of the polyharmonic B-spline function φ2γ(x):

φ̂2γ(ω) =
V̂γ

Q(ω)

‖ω‖2γ
,

which generalizes Rabut’s γ-harmonic B-splines [15, 19]. It is
possible to show that for γ > d

4
the lattice shifts of φ2γ are square-

integrable and satisfy the necessary conditions for constituting a
Mallat-type multi-resolution analysis (MRA) [20–22], meaning that
they

a) form a partition of unity;

b) ful l a two-scale relation of the form

φ2γ(QD−1Q−1x) =
X

k∈Zd

hkφ2γ(x − Qk)

with h ∈ 	1(Zd), for any integer subsampling matrixD such that
QDQ−1 corresponds to a similarity transform; and

c) generate a Riesz basis for their 	2 span.

The multi-resolution spaces are de ned by

Vn
def
=

n X
k∈Zd

ckφ2γ(QD−nQ−1 · −Qk)
˛̨
˛c ∈ 	2(Zd)

o
.

These spaces are nested, i.e.,

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(Rd).

Polyharmonic wavelet bases are lattice-shift-invariant sets span-
ning the orthogonal complements in the series of nested multi-
resolution spaces. The signi cant property of these wavelets is that
they approximate the fractional LaplacianΔγ at low frequencies, in
the sense that for any semi-orthogonal polyharmonic wavelet ψ2γ

we have
ψ2γ(x) = Δγη(x) (3)

with η(x) (the smoothing kernel) having a Sobolev exponent of no
less than 4γ − d

2
.

4. WAVELET ANALYSIS OF FBM

Owing to the Laplacian-like behaviour of the wavelets at low fre-
quencies (Eqn (3)), we can show the following results about the
wavelet transform coef cients of an fBm process, given by

wn[k] = 〈BH , |D|−
n
2 ψ2γ(QD−nQ−1x − Qk)〉.
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a) The polyharmonic spline wavelet transform of order 2γ ≥ H+ d
2

maps the non-stationary process BH into a series of station-
ary (discrete) Gaussian processes, which correspond to se-
quences of samples of a stationary process with power spectrum

ε′H‖ω‖2γ−H− d
2 |η̂(ω)|2.

b) The variance of the polyharmonic wavelet coef cients of BH

depends exponentially on the Hurst exponent and the scale n:

E
˘
w2

n[k]
¯

= |D| (2H+d)n
d E

˘
w2

0[k]
¯
. (4)

The properties just mentioned allow us to generalize wavelet es-
timators of the Hurst parameter that exist in the literature [10,20,23]
to the multi-dimensional case. We may take the logarithm of the
sides of Eqn (4), thus obtaining the relation

log d
√

|D|
`
E

˘
w2

n[k]
¯´

= (2H + d)n + C, (5)

whereby an estimate of the Hurst parameter may by found via linear
regression of sub-band variances in a logarithmic scale. (C in the
above equation is a computable constant that depends on the partic-
ular wavelet used in the analysis.)

5. SIMULATION AND EXPERIMENTS

To verify the estimation procedure described above, instances of
two-dimensional fBm were created by non-stationary Fourier do-
main ltering of white Gaussian noise as per §2.2 and analysed us-
ing the quincunx isotropic polyharmonic wavelets of Van De Ville
& al. [15] (Figs 1(a) and 1(d)). A fast FFT-based implementation
of the wavelet transform of suf cient order was used. The quincunx
subsampling scheme utilized provides a more gradual scale progres-
sion in comparison with dyadic subsampling, thereby affording more
data points for the regression step. (A second advantage is that the
quincunx design involves only a single mother-wavelet.) Results for
100 fBm images of dimensions 512×512 and three different values
of H are summarized in Table 1, demonstrating the robust (albeit
biased) nature of the estimator.

Table 1. Wavelet-based estimation ofH (100 realizations)
True value MeanHest Standard dev. Hest

0.3 0.285 0.012
0.6 0.584 0.012
0.9 0.884 0.013

A similar analysis was applied to T2 MRI (with boundaries and
background removed) and mammograms (Figs 1(b) and 1(c)). In
both cases, strong agreement with the fractal model (indicated by
the linear growth of the wavelet coef cient variances in the logarith-
mic scale) was observed (Figs 1(e) and 1(f)). As already noted in
the introduction, some justi cation for this behaviour can be found
in the relation between growth processes and fractals (particularly
in the case of the branching of the arteries in the brain, as T2 MRI
can provide an indirect measurement of the concentration of oxy-
genated blood). In addition, these observations can be taken as fur-
ther evidence for the relevance of fractal models and fractal analysis
in medical and biomedical applications.

6. CONCLUSION

Motivated by the ubiquity of bio-fractals and the perceived im-
portance of fractal models in medical and biomedical imaging,
we proposed a simple innovation model of fBm in concordance
with Gel’fand and Vilenkin’s theory of generalized stochastic pro-
cesses [12], and suggested a family of computational tools—rooted
in multi-resolution and multi-scale analysis—for the fractal analysis
of multi-dimensional data. The pertinence of the discussed models,
and the suitability of the proposed computational tools was veri ed
by their application to MRI and mammography images, which dis-
played clear agreement in behaviour with theoretical predictions.
The tools and framework reviewed in this paper show a great po-
tential for further investigation in biomedical imaging applications,
and in particular, in the analysis of bio-textures obtained through
different multi-dimensional bio-imaging modalities.
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