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ABSTRACT

Magnetic Resonance Imaging (MRI) can be used for non invasive
temperature mapping and is therefore a promising tool to monitor
and control interventional therapies based on thermal ablation. The
Proton Resonance Frequency shift MRI technique gives an estimate
of the temperature by comparing phase changes between dynami-
cally acquired images. These temperature measurements are prone
to motion induced errors however, particularly in abdominal organs
due to breathing.

Several computational approaches have been proposed previ-
ously to correct for these motion related errors on the measured tem-
perature. They have required significant time to compute however,
and have not been sufficiently fast for several real-time temperature
mapping applications. This paper proposes to use modern graphics
cards (GPUs) to assess on-line motion corrected thermal maps. The
computation times obtained on the GPU are compared to an exist-
ing CPU reference implementation. An acceleration factor close to
7 was obtained for the processing of one slice (resolution 128× 128
pixels), and higher than 21 for 12 slices, allowing a real-time imple-
mentation.

Index Terms— Magnetic Resonance Imaging, Real time sys-
tems, Temperature control, Image motion analysis, Motion compen-
sation.

1. INTRODUCTION

Real-time Magnetic Resonance (MR) thermometry provides con-
tinuous temperature mapping inside the human body and is there-
fore a promising tool to monitor and control interventional therapies
based on thermal ablation [1]. Thermotherapy procedures can be
performed using High Intensity Focused Ultrasound (HIFU) devices
which are non-invasive since the device itself is fully extra-corporal.
The observable MR signal is a complex number Meiϕ. Grey lev-
els on anatomical images are proportional to the magnitude value
whereas phase value relates to the proton resonance frequency. The
most widely used MR temperature mapping is based on temperature
dependence of the water Proton Resonance Frequency (PRF) [2].
The temperature map at instant n (noted ΔTn) can be obtained on-
line by analyzing signal variation between the current phase image
ϕn and a reference phase image ϕref acquired before the hyperther-
mia (typically the first of the temporal series) as follows:

ΔTn = (ϕref − ϕn) · k k =
1

γ · α ·B0 · TE
(1)

where γ is the gyromagnetic ratio (≈ 42.58 MHz/Tesla), α the tem-
perature coefficient (≈ 0.009 ppm/K), TE the echo time and B0 the
main magnetic field. This calculation is performed for each voxel to
obtain temperature maps.

MR-temperature measurements allow on-line thermal dose eval-
uation during an intervention, which in turn permits immediate pre-
diction of tissue necrosis, and hereby a prediction of the effective-
ness of the therapeutic thermal treatment. Lethal effects of elevated
temperatures have been studied by Sapareto et al. [3] who estab-
lished an empirical relation between past temperature, duration of
exposure, and cell death.

On-line temperature monitoring may also improve treatment ef-
ficiency by adapting local energy deposition to deliver a pre-defined
thermal dose in a pre-defined volume; to obtain such a control, it has
been shown that MR thermometry can be used to provide spatial and
temporal temperature feedback for the power control of the heating
device. Until now, such a control system has been demonstrated for
immobilized tissues in vitro and in vivo.

Thermotherapy opens great prospects for treatment of vital or-
gans such as the kidney, the liver, and the heart. These organs move
however, and, sinceB0 is generally spatially non-uniform, any phase
measurements on a tissue sample taken at a different position will
show a relative phase difference. Therefore, the attempt to detect
temperature changes with equation (1) would be severely biased by
motion induced phase changes [4]. A robust removal of these non-
temperature related phase variations, i.e. motion correction, is a pre-
requisite for precise MR-thermometry on moving targets. Figure 1
depicts a multi-baseline approach which address this problem [5].
This technique is motivated by the fact that for most therapeutic ap-
plications within the human body, motion is caused by the respira-
tory cycle and is thus periodic. This can be exploited as follows:

• Step 0: a magnitude and phase lookup table, which covers the
entire motion cycle, is established prior to MR-thermometry.

• Step 1: during the intervention, the phase image of the
lookup table acquired with a similar organ position is se-
lected, and used as a reference for temperature computation
with equation (1). The correct temperature can now be esti-
mated since the phase differences represent only temperature
related phase changes..

• Step 2: temperature information is mapped to a reference po-
sition in order to allow computation based on past tempera-
ture measurements (such as on-line thermal dose evaluation
and automatic power control of the heating device). In addi-
tion, when the heating is performed with a HIFU device, es-
timated organ displacement also allows dynamic adjustment
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of the focal point position to track the targeted pathological
tissue. Without such corrections, the treatment is inefficient
or, worse, may induce unwanted destruction of healthy tissue.

Fig. 1. Data processing sequence for temperature maps computation.
In this study, we propose to accelerate processing steps reported in
grey using a GPU hardware.

Two conditions must be met in order to make MR temperature
mapping widely useful for thermal therapies in clinical practice: 1)
adequate spatial and temperature resolution; 2) on-line availability
of accurate temperature maps and thermal dose maps. Processing of
an image must thus be done fast enough to ensure real-time moni-
toring of temperature evolution. In practical terms this implies that
processing must be achieved within the delay between successive
MR-acquisitions.

Recent techniques based on the use of additional information
[6] [7] have been proposed to address step 1 and/or step 2. MR
magnets now allow on-line acquisition of large data volumes. This
allows assessment of a more robust and complex description of or-
gan displacements. The feasibility of non-invasive thermo-ablation
procedures using this information was demonstrated on mobile ex-
vivo targets [5]. However, the numerical computation required for
on-line treatment of acquired data sets limits the use of fast imag-
ing techniques. In addition, with HIFU devices, a prediction of the
target position is required for dynamic adjustment of the focal point
location as the delay between the acquisition and the time when mo-
tion information has actually been computed is not negligible. This
has previously constrained the use of those techniques to patients
under artificial respiratory monitoring. Consequently, to generally
assess thermal ablation in-vivo, an acceleration of those techniques
has to be achieved. The idea proposed in this paper is to use graph-
ics hardware (GPUs) as a fast parallel computational platform to sig-
nificantly speedup the required computations to enable on-line esti-
mation of target positions and online correction for motion related
errors on thermal maps.

In practice, as on-line acquisition of 3D isotropic images is diffi-
cult because of technical limitations and Signal/Noise ratio consider-
ations, individual 2D processing of each acquired slice is performed.

2. GPU IMPLEMENTATION

A GPU can be seen as a massively parallel coprocessor (the most
recent GPUs have 16 SIMD multiprocessors containing 8 proces-
sors each) and is thus very well suited for computational problems
that can be solved in parallel. Algorithms have to be formulated
such that computation is distributed to a high number of indepen-
dent threads. In the CUDA (Compute Unified Device Architecture)
GPU programming framework [8] threads are organized in so-called
thread blocks. Each thread block can currently contain up to 512
threads which are executed by a single multiprocessor using time
slicing. This means that the computations of the individual threads

in each thread block are interleaved, primarily to hide memory la-
tency. The GPU has a large amount of general DRAM global mem-
ory, which provides relatively slow data access compared to the on-
chip shared memory that is also available on a per block level. This
shared memory features very fast general read and write access that
threads in the same block can use to share data. To optimize mem-
ory bandwidth, memory access from the individual threads can be
aligned such that a memory accesses can be coalesced into a single
contiguous memory access by the memory controller.

In this paper, a GPU-accelerated multi-baseline approach for
correction of motion related errors on temperature maps is described
and evaluated. The algorithm was implemented using CUDA v1.0
and C++. It was tested on an Intel Core 2 2.13 GHz with 2 Gb of
RAM and a NVIDIA 8800 GTX graphic card with 768 Mb of RAM.

3. METHOD DESCRIPTION

3.1. Step 0 & Step 1 : On-line correction of motion related er-
rors on temperature maps

Classic multi-baseline correction approaches use a complete collec-
tion of reference magnitude and phase images constructed before
initiation of the thermal therapy. For this purpose, K images are
acquired with the same MR protocol without hyperthermia (K is
chosen to cover the entire motion cycle). Subsequently, during MR-
thermometry, for a given organ position, the corresponding phase
correction is selected and subtracted from the current phase. A ro-
bust selection criterion consists of evaluating the maximum inter-
correlation coefficient between the actual magnitude image Icur and
each magnitude images stored the collection Ik

col, ∀k ∈ [0, K[:
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where Icur and I

k

col are average pixel intensities of Icur and Ik
col

respectively.

3.1.1. Step 0: before hyperthermia

The following numerical expressions are computed each time a new
image is acquired before hyperthermia:

1. γk(x, y) =
(
Ik

col(x, y)− I
k

col

)
, ∀(x, y) and ∀k ∈ [0, K[,

2.
∑

x,y

(
Ik

col(x, y)− I
k

col

)2

=
∑

x,y γk(x, y)2, ∀k ∈ [0, K[,

This information is stored with the magnitude image information
Ik

col in the global GPU device memory and is thus directly available
during the hyperthermia procedure, avoiding costly data transfers
from the CPU to the GPU.

3.1.2. Step 1: during hyperthermia

For each newly acquired image the following numerical expressions
are computed:

1.
∑

x,y

((
Icur(x, y)− Icur

)
.γk(x, y)

)
, ∀k ∈ [0, K[,

2.
∑

x,y

(
Icur(x, y)− Icur

)2, ∀k ∈ [0, K[,
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using parallel kernels to assess the average pixel intensity Icur , as
well as coefficients inside each sum, and sums computation. 1D
thread blocks were used so that memory accesses were coalesced.
An optimal device occupancy was found for a block size of 256
threads on the tested GPU hardware.

The phase image corresponding to the maximum inter-correlation
(see equation (2)) is then selected and taken as reference for temper-
ature computation with equation (1).

3.2. Step 2 : On-line organ displacement estimation and correc-
tion

The objective is to register each image voxel in the most recently
acquired image (noted Icur) with the corresponding reference image
(noted Iref ). Iref is chosen to be the first image in the temporal
series in step 0.

3.2.1. Algorithm for organ displacement estimation

Motion can be computed with differential estimation methods of op-
tical flow that estimate a velocity field assuming an intensity con-
servation during displacement (mathematically expressed by the left
part of equation (3)). A regularity constraint is also required. The
global regularity constraint proposed by Horn and Schunck [9] pro-
vides a good estimation of the displacement of the organs because it
matches real organ motion assuming that motion field vectors have
similar values for adjacent pixels (right part of equation (3)). We
seek a transformation minimizing:∫

y

∫
x

(
[Ixu + Iyv + It]

2 + α
2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (3)

where u and v are displacement vector components, Ix, Iy , It are
the spatio-temporal partial derivatives of the intensity, and α is a
user defined weighting factor (a typical value of 0.3 was used in this
study).

3.2.2. Implementation on the GPU hardware

The registration method is outlined as a sequence diagram in figure
2. All the time consuming steps can be processed in parallel:

• Downsampling of an image with a factor 2.
• Upsampling of an image with a factor 2.
• Application of a spatial transformation on an image.
• Computation of spatio-temporal gradients of the intensity Ix,

Iy and It.
• Resolution of the numerical scheme defined by equation (3).

A computation kernel is programmed for each processing step.
Computations are performed on thread blocks of sizeM ×N - each
thread corresponding to one pixel. M was chosen higher than N to
ensure coalesced memory accesses. Optimal device occupancy was
found for (M, N) = (32, 4) on the tested GPU hardware. Numer-
ical minimization of equation (3) is solved with an iterative scheme
based on the Jacobi method as follows:

⎧⎨
⎩

uk+1 = uk −
Ix.uk+Iy.vk

α2+I2
x+I2

y

vk+1 = vk −
Ix.uk+Iy.vk

α2+I2
x+I2

y

(4)

where k denotes the iteration number (a typical number of 100 iter-
ations was performed), uk and vk refers respectively to the average
of uk and vk in a neighborhood 3× 3 of the current pixel position.

Fig. 2. Data processing sequence for motion estimation using a
multi-resolution approach of the Horn&Schunck algorithm. Pro-
cessing steps in grey are accelerated using the GPU hardware.

Blocks are transferred into shared memory for fast data access.
The image is thus only read from and written to global memory at
the beginning and at the end of each iteration respectively. For each
pixel the computation of equation (4) requires intensity information
in a neighborhood of size 3 × 3 pixels. Each block thus requires
intensity information in a shared memory region of size (M + 2)×
(N + 2) pixels. Each thread performs the numerical computations
of equation (4) for one pixel of the acquired image.

Finally the estimated motion field is used to map temperature
information to the reference position.

In case of multi-slice acquisitions, each kernel computes all
slices within one invocation.

4. EXPERIMENTAL VALIDATION

4.1. Results obtained on a single slice

Computation times were measured with CPU and GPU-optimized
implementations and reported in Table 1. An overall acceleration
factor of 6.9 was obtained for one image of resolution 128 × 128
(composed of acceleration factors of 2.3 and 7.6 for step 1 and step
2 respectively), 14.3 for a resolution 256× 256 (composed of accel-
eration factors of 3.8 and 16.4 for step 1 and step 2 respectively), 22
for a resolution 512× 512 pixels (composed of acceleration factors
of 4.5 and 26 for step 1 and step 2 respectively).

Process- 128× 128 256× 256 512× 512
ing step CPU GPU CPU GPU CPU GPU
Step 1 7.2 3.1 28.7 7.6 115.3 25.4
Step 2 153.8 20.3 636.5 38.9 2616.9 99
Total 161 23.4 665.2 46.5 2732.2 124.4

Table 1. Comparison between computation time (in milliseconds)
required with CPU and GPU implementations, for each processing
step, with different image resolutions (results for step 1 were ob-
tained using a collection of 100 images).

4.2. Results obtained on multi-slice acquisitions

Figure 3 reports computation times measured with the GPU-
optimized implementation on multi-slice acquisitions using an
in-plane resolution of 128 × 128 pixels. A fixed CPU overhead
of 1.4 ms is required for step 1, and of 16 ms for step 2 (see dashed
lines). Then, for each slice, an average additional GPU contribution
of 1.7 ms is required for step 1 and of 4.3 ms for step 2. Thus,
although the individual processing of 12 slices in multi-baseline
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collections of 100 images required 12× 7.2 = 86.4 ms on the CPU,
only 21.9 ms were required on the GPU (which reflects an acceler-
ation factor close to 4). Similarly, although the 2D registration of
12 slices required 12 × 153.8 = 1845.6 ms on the CPU, only 67.4
ms were required on the GPU (which reflects an acceleration factor
higher than 27). An overall acceleration factor higher than 21 was
thus obtained in case of an acquisition of 12 slices.

Fig. 3. Computation time (in milliseconds) obtained for different
slice numbers of resolution 128 × 128 pixels. Left: step 1 (using a
collection of 100 images), Right: step 2.

Figure 4 shows an example of the results obtained for abdominal
organ displacement on a healthy volunteer under free breething. All
images were obtained on a 1.5 Tesla Philips Achieva system with a
conventional gradient echo sequence (TE=18 ms). Each slice was
acquired at a resolution of 128×128with a voxel size of 2.5×2.5×8
mm3 (see Fig. 4.a). 100 images were acquired during the pre-
treatment step and stored in the multi-baseline collection to allow a
precise sampling of the respiratory cycle. As expected, the displace-
ment vectors direction is mainly vertical with a higher value for the
liver as compared to the kidneys (see Fig. 4.b). Fig. 4.c and 4.d
compare standard deviation on each pixel for a temporal series be-
fore and after correction respectively. With the proposed approach,
more than 80% of pixels in the kidney depicts a temperature standard
deviation lower than 3oC.

Fig. 4. MR thermometry on the abdomen of a free breething vol-
unteer. (a) anatomical image, (b) estimated displacement field vec-
tor, (c, d) temporal temperature standard deviation reported for each
pixel without (c) and with (d) the proposed correction.

5. DISCUSSION AND CONCLUSION

This study shows that our GPU implementation achieves a signifi-
cant speedup compared to our existing CPU implementation for cor-
rection of motion related errors on temperature maps. The total com-
putation times on the GPU were clearly below the typical MR acqui-
sition duration for all tests, demonstrating that on-line monitoring
of temperature evolution is feasible under our experimental condi-
tions. It is also interesting to note that computation is performed in
an asynchronous way: the CPU is able to manage other processes
(for example user interaction or piloting of the heating device) while
the GPU makes computations. The obtained results open great op-
portunities to perform real-time temperature monitoring using recent
fast MR thermometry sequences.

It is also interesting to note that, in step 1, simple computations
are performed on a large amount of data, while complex numerical

calculations are performed on a small data set in step 2. Memory
access latency explains that a more significant acceleration was ob-
tained for step 2. Nevertheless, the proposed study demonstrates that
the GPU accelerates the computation of both of these two “opposite”
tasks.

The implemented registration algorithms rely on the assumption
of conservation of magnitude pixel value along motion. However,
this condition can be violated during thermotherapy as several MR
relevant tissue properties such as T1 and T2 relaxation times can
change during heating, leading to local signal intensity variations in
the heated region. The global regularity constraint proposed by Horn
and Schunck is more robust to this effect compared to algorithms es-
timating displacement on image blocks (which leads to significant
errors on the estimated motion field). The implemented algorithm is
well adapted for small temperature increases, as for example when
heating is performed with a focused ultrasound device. In case of
large temperature increases (as for example when heating is per-
formed using laser or radio-frequency devices) adapted registration
algorithms have to be used [10]. The results obtained in the present
study show great prospects for implementation of such techniques
on GPU hardware.

The proposed method combined with a fast MR acquisition and
reconstruction protocol [11] offers good expectations for accurate
real time characterization of complex 3D organ displacement.

In view of future clinical application, quantitative rapidMR tem-
perature imaging may provide an effective real-time monitoring of
the intervention and a clinical endpoint for the therapeutic treatment.
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