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ABSTRACT

Segmenting dynamic contrast enhanced-MRI series of small

animal, which are intrinsically noisy and low contrasted im-

ages with low resolution, is the aim of this paper. To do

this, a segmentation method taking into account the tempo-

ral (spectral) and spatial information is presented on several

series. The idea is to start from a temporal classification, and

to build a probability density function of contours condition-

ally to this classification. Then, this function is segmented to

find potentially tumorous areas. The method is presented on

several series after a range normalization histogram in order

to compare the series.

Index Terms— Hyperspectral images, mathematical

morphology, MRI, segmentation, angiogenesis imaging

1. INTRODUCTION

The aim of this paper is to segment image series of DCE-MRI

(Dynamic Contrast Enhanced MRI) of small animal, using

mathematical morphology tools developed for hyperspectral

images. The images are series of 512 channels of size 128 ×
128 acquired at a regular step of 1 second, in time, on mice

presenting tumors [1]. Although the images are time series,

we use the terminology of hyperspectral images.

Hyperspectral images are multivariate discrete functions

with several tens or hundreds of spectral bands. In a formal

way, for each pixel of a 2D hyperspectral image is consid-

ered a vector with values in wavelength, time or associated

with any index j. To each wavelength, time or index corre-

sponds an image in two dimensions called channel. In the

sequel, we use the term of spectrum and spectral channel to

describe temporal phenomena. Let fλ : E → T L (x →
fλ(x) = (fλ1(x), fλ2(x), . . . , fλL

(x))), be a multispectral

image, where: E ⊂ R
2, T ⊂ R and T L = T × . . . × T ;

x = xi \ i ∈ {1, 2, . . . , P} is the spatial coordinates of a

vector pixel fλ(xi) (P is the pixels number of E); fλj \ j ∈
{1, 2, . . . , L} is a channel (L is the channels number); fλj

(xi)
is the value of vector pixel fλ(xi) on channel fλj

.

fλ1 fλ256 fλ512

cfα1
(x) 14,6% cfα2

(x) 5,7% cfα3
(x) 3,9%

̂fλ1
̂fλ256

̂fλ512

Fig. 1. Representation of channels of the series in various

spaces: image space fλ (512 channels), factor space cf
α (16

channels) with inertias, filtered image space ̂fλ (512 channels)

2. PRE-PROCESSING

As shown in [2], Factor Correspondence Analysis (FCA) is

useful to filter out the noise in multivariate images. FCA

transforms the pixels fλ(xi) into factor pixels cf
α(xi) leading

to another hyperspectral image in factor space: ζ : T L →
T K/K < L (fλ(x) → cf

α(x) = (cfα1
(x), . . . , cfαK

(x))).
After a reconstruction with 16 factorial axes, represent-

ing 41 % of inertia, a filtered image is obtained: ̂fλ(x) =
( ̂fλ1(x), . . . , ̂fλL

(x)) (fig. 1). A linear model is fitted for

each vector pixel, excluding the first transitory twenty chan-

nels corresponding to the injection of the contrast agent

(fig. 2 & 3). This model ̂fλ(x) ∼ a(x)λj + b(x) with

j ∈ [21, . . . , 512] has two parameters, the slope a and

the intercept b. On the first 20 channels, the rise m is de-

fined: m(x) = maxj∈[1:20]( ̂fλj (x)) −minj∈[1:20]( ̂fλj (x))).
Therefore, a parameter image is created with three channels:

p(x) = (a(x), b(x),m(x)).
Consequently, dimensionality reduction is performed ei-

ther by FCA, or by model approach. Then, the classification
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Fig. 2. Model fit at point (66, 62) of the heart cavity.

slope a intercept b rise m

Fig. 3. Parameters maps of the linear model fit for each pixel.

is computed on these spaces of lower dimension.

3. PIXEL-TEMPORAL CLASSIFICATION

Classification is performed in the temporal dimension by un-

supervised and semi-supervised methods.

For the unsupervised approach, k-means classification in

five classes is applied to the factor space cf
α. Another classi-

fication is made, according to the minimum distance L1 be-

tween the linear model of each average filtered spectrum of

the k-means classes, and the linear model of each pixel vector

of the filtered image ̂fλ (fig. 4). This method is called model

classification. Both methods are directly applied to other se-

ries, and compared to references given by the doctors (fig. 5).

The general name of the series is ”serimxxx” with ”serim447”

the initial one and ”serim415” and ”serim450” the two others.

We notice that the classifications give the limits of the

main areas having similar spectra. Besides, the model clas-

sification seems to be more robust than the k-means classifi-

cation. In fact the model decreases the entropy of the image

by introducing a prior information for the pixel spectrum.

A semi-supervised classification by Linear Discriminant

Analysis (LDA) is also performed on two spaces: the spec-

trum of the filtered image ̂fλ and of the parameters p (fig. 6).

The training and test errors computed on 80 vector pixels by

a 5-fold cross validation are both equal to zero.

reference k-means model

Fig. 4. Unsupervised classification in 5 classes. The green

circle is the position of the tumor given by the doctors.

reference k-means model LDA on p

series ”serim415”

series ”serim450”

Fig. 5. Unsupervised classification (k-means and model) in 5

classes and semi-supervised classification (LDA) in 4 classes

for two different series than in figures 4 and 6.

train LDA on ̂fλ LDA on p

Fig. 6. Semi-supervised classification LDA in 4 classes.

In order to use a LDA on other image series, with the same

training pixels, the range of the grey levels of the images must

be similar; otherwise the projection of the pixels of these se-

ries on the classified space is incoherent. Consequently, we

have introduced a range normalization method based on his-

togram anamorphosis. To get more robust results, the multi-

variate image of parameters p is used. For each parameter,

the cumulative distribution function (cdf) of the values is es-

timated. The cdf is the primitive of the density function esti-

mated by an histogram. It is composed of 255 classes defined

on parameters of the initial series. The cdf is transformed by

a numerical anamorphosis in order to be similar to the cdf of

the initial series ”serim447” (fig. 7).

After the range normalization of histograms, a LDA with

a training on the selected pixels of the initial image is applied

to the other series (fig. 5). We notice that classifications give

the limits of the main areas having similar spectra than the

training set.

As for unsupervised classification, there are some anatom-

ical parts which are classified as the background, in red. In

fact, the spatial information is not used at this stage and the

pixels of each class may be disconnected.

4. SPATIAL-TEMPORAL REGIONAL
SEGMENTATION

The spatial and temporal information is introduced with a

multivariate gradient obtained by stochastic watershed (WS)

with regionalized random balls markers.
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Fig. 7. Cumulative distribution functions computed on the

parameters a, b and m of each series before (first column)

and after normalization (second column). The reference is

the parameters cdf of the initial series ”serim447”.

classification mpdf segmentation

gradient segmentation

Fig. 8. 1st row: stochastic WS starting from the classification

by a model, 2nd row: standard WS with the 20 largest regions

on volume.

The standard stochastic WS consists in starting from uni-

form random point markers to flood the norm of a gradient

and to obtain associated contours to random markers. After

repeating the process a large number of times, a probability

density function of contours (pdf) is computed by the Parzen

kernel method [3]. The pdf is flooded with a hierarchical wa-

tershed according to a volume criterion [4]. For hyperspectral

images, a pdf is built for each channel of the image and the

flooding function is the weighted sum of the pdf of the chan-

nels. This function called a marginal probability density func-

tion and contains spatial information [5]. In the sequel, the

marginal pdf mpdf is computed conditionally to a temporal

classification, using a new way to select markers. Therefore,

this pdf contains spatial and temporal information.

Given D = {Dj} a partition, obtained by classification,

of disjoint classes of the image space E ⊂ R2. Each class

Dj of the partition is composed of connected components Ci:

i.e. Dj = ∪iCi. Then the markers m are drawn conditionally

to the connected components Ci of the classification. To do

this, the following rejection method is used: the markers are

distributed with a uniform random drawn. If a marker m is

inside a connected component Ci of minimum area S, and

not yet marked, then it is kept, otherwise it is rejected. These

markers are called regionalized random markers.

Moreover to decrease the probability of small, textured

and low contrasted contours regions, we use random balls as

markers. The centers of the balls are the regionalized random

markers and the radii r are uniformly distributed between 0
and a maximum radius Rmax: U [1, Rmax]. Only the inter-

section between the ball B(m, r) and the connected compo-

nent Ci is kept as marker. These balls are called regionalized

random balls markers (algorithm 1).

Algorithm 1 Regionalized random balls markers
Given N the number of markers to be drawn, S and Rmax
for all markers m between 1 and N do

if (Ci such as m ∈ Ci is not marked) AND

(area(Ci) ≥ S) then
r = U [1, Rmax]
keep B(m, r) ∩ Ci as marker

indicate that Ci is marked
end if

end for

Starting from the classification by a model, which seems

more robust, a segmentation is performed by stochastic WS

with N = 100 points, M = 100 realizations, R = 20 re-

gions, a minimum area S = 10 pixels and a maximum radius

for random balls of Rmax = 30 pixels (fig. 8). The number

of regions must be sufficiently high to detect enough contours.

With the segmentation, we have tried to detect potentially tu-

morous areas.

This result is better than a standard hierarchical WS, with

the 20 largest regions on a volume criterion, applied on a Ma-
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(a) Results (b) Flowchart of the analysis

Fig. 9. (a) References, mpdf , detections of potentially tumorous areas and confidence maps βa and βb on parameters for the

three series. (b) Flowchart od the whole analysis pipeline.

halanobis distance based-gradient [2] (fig. 8).

5. COMPUTER-AIDED DETECTION

Potentially tumorous areas are detected with (1) a positive

mean slope parameter a, because the contrast agent tends to

accumulate in these areas, and (2) a mean intercept b higher

than 800 after histogram normalization. This last criterion

was empirically defined. Moreover for each area, coefficients

of variation are measured. These coefficients β are defined as

the ratio between the standard deviation σ and the mean of the

parameter mean for the considered region: βa = σa/meana,

βb = σb/meanb. Therefore confidence maps are created for

parameters with an adapted color scale for each parameter,

starting from the highest confidence in blue to the lowest in

red. We notice that for each series, the areas corresponding

to tumors have parameters with a higher confidence (fig. 9

(a)). These preliminary results, obtained on 25 series, are very

promising, but should be confirmed on more data for further

applications.

The whole analysis flowchart is presented on figure 9 (b).

6. CONCLUSIONS AND PERSPECTIVES

In this paper, the segmentation of DCE-MRI series by

stochastic multivariate watershed with regionalized random

balls markers is presented to improve the results obtained by

classification. The originality of this approach is to combine

spatial and temporal information in a multivariate gradient

mpdf . Temporal information comes from a classification,

which conditions the random generations of the markers for

the mpdf . Therefore the stochastic watershed is very useful

to detect the low contrasted regions corresponding to tumors

as it regularizes the contours. Moreover, a range normaliza-

tion histogram is also tested on parameters in order to obtain

similar parameters range. Finally, a computer-aided detection

of potentially tumorous areas is proposed, and seems very

promising for very difficult data sets.
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