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ABSTRACT
GRAPPA is one of the predominant methods used to recon-

struct accelerated parallel MRI data. In has been shown

previously that spatially varying the GRAPPA reconstruc-

tion coefficients can be advantageous. A significant problem

with these approaches, however, is an increase in computa-

tion time due to an increase in the number of linear system

solves needed. Here, we leverage the fact that these systems

vary slowly over the coordinate space and employ recursive

adaptive filters in place of explicit system solves. This ap-

proach produces high quality spatially variant GRAPPA re-

constructions with a computation time comparable to stan-

dard GRAPPA.

Index Terms— Magnetic resonance imaging, Parallel

MRI, GRAPPA, RLS

1. INTRODUCTION

Parallel MR imaging (pMRI) employs multiple receiver coils

to acquire data. These coils contribute an inherent spatial do-

main encoding that complements traditional Fourier encod-

ing. This enables one to subsample during image acquisition,

allowing one to reduce image acquisition time, improve spa-

tial and/or temporal resolution, or some combination of both.

A good review of pMRI can be found in [1].

GRAPPA [2] is one of the most widely used parallel MR re-

construction algorithms in clinical use today. The technique is

based on finding correlations in the acquired data, which orig-

inate from the multi-coil view of the imaged plane. GRAPPA

is often referred to as an auto-calibrated k-space technique,

as the reconstruction parameters can be derived directly from

the acquired data in certain scenarios, and the processing

typically takes place completely in the Fourier domain—in

contrast to SENSE [3] and similar methods, which require

explicit estimates of the acquisition coil sensitivities. Be-

cause explicit coil sensitivity estimates are not required in

GRAPPA, the technique remains robust in many situations

where SENSE can fail, e.g. [4].
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To improve the performance of GRAPPA, many extensions

have been proposed including processing in the image- and/or

hybrid- (both k- and x- space) domains to reduce computation

time [5] and the use of coordinate dependent reconstruction

parameters to improve image quality [6, 7, 8]. It was shown

in [9] that an alternative to using a 2D k-space (kx, ky) recon-

struction kernel is to use instead a 1D kernel in hybrid-space,

(x, ky). It was further shown in [5] that employing the re-

construction parameters in the hybrid-space is more efficient

computationally.

Similarly, it was shown in [6] and [7] that varying the re-

construction parameters across the coordinate space produces

higher quality reconstructions. For example, in KIPA [6] one

employs a set of reference data fully sampled at the Nyquist

rate to calculate reconstruction coefficients for a number of

different locations in k-space. These coefficients are then

used in subsequent accelerated acquisitions. The authors

claim high acceleration rates, although the method is cur-

rently limited to scenarios where the reference data closely

matches the accelerated data.

Varying the reconstruction parameters substantially in-

creases the computational load, however, as the number of

system solves needed to identify those parameters necessar-

ily increases. Previous approaches to mitigate this included

computing the reconstruction coefficients at only a few loca-

tions and then interpolating between them, as in SV-GRAPPA

[7]. However, the linear system associated with finding these

coefficients changes in a structured way, from point-to-point

along data coordinate space. Specifically, points at the trailing

edge of the contribution window are removed, while points at

the leading edge are added. All points in between remain.

This scenario mirrors the data flow that drove develop-

ment of adaptive filtering algorithms. We demonstrate be-

low that through the use of adaptive filters, one can dramati-

cally reduce the computational load in SV-GRAPPA, while si-

multaneously capitalizing on efficiencies provided by hybrid-

domain calculations. Furthermore, the approach may provide

a mechanism to achieve a self-referenced version of KIPA.
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2. THEORY

The acquired data in each coil Wl of an accelerated pMRI ac-

quisition can be modeled as sl(k) =
∫

Wl(r)ρ(r) exp{jπ(k·
r)}dr where ρ(r) is the spatial distribution of excited spins as

seen by coil Wl(r), the product of which is Fourier encoded

and then sampled. Here, we consider the case of sampling

s(k) on a rectilinear grid, sampling at the Nyquist rate along

the frequency encode direction, kx, while sampling below the

Nyquist rate—i.e. subsampling—along the phase encode di-

rection, ky .

2.1. GRAPPA and related variations

In GRAPPA, one seeks to reconstruct missing data points in

sl(kx, ky) through a linear combination of measured neigh-

boring data points. Specifically, the reconstruction is per-

formed as

sl(kx, ky+mΔky) =
L∑

j=1

∑

b,c

gl(j, m, b, c)sj(kx+c, ky+bf)

(1)

where gl refers to the reconstruction coefficients for coil l,
which combine data from all coils, j ∈ [1, L], using multiple

points along ky , b ∈ [0,M ], and kx, c ∈ [0, N ]. The size

of the reconstruction kernel, M -by-N , is set by the number

of points used. That is, a 2x3 kernel employs two ky points

and three kx points from data in each coil, sj , to reconstruct

one data point in sl. f refers to the distance along ky between

acquired data points, and m refers to the offset between the

kernel and the reconstructed point. For example, to use a 2x3

kernel to reconstruct 3x accelerated data, m would be limited

to m ∈ {1, 2}, one value for each missing line within the

reconstruction kernel span.

The reconstruction coefficients are identified by construct-
ing a linear system relating known source measurements to
known targets. In self-referenced reconstructions, these are
obtained from a set of auto-calibration signals (ACS) sampled
at the Nyquist rate. For each target point in the ACS region,
one row of the linear system is written as

sACS
l (kx, ky+mΔky) =

LX

j=1

X

b,c

sj(kx+c, ky+bf) gl(j, m, b, c).

(2)

Given a sufficient number of rows, one can solve the linear

system and identify GRAPPA parameters to perform a recon-

struction of the data.

One can reformulate this reconstruction approach into ei-

ther the spatial-domain, (x, y), or the hybrid-domain, (x, ky),
through appropriate use of the Fourier transform. This con-

verts the 2D k-space convolution kernel into a point-wise mul-

tiplication or a 1D convolution kernel, respectively. A men-

tioned previously, there are computational incentives for these

conversions, [5].

2.2. Adaptive Filtering

Given the view of GRAPPA as a convolution, we consider

here using adaptive algorithms to perform the reconstruc-

tion. Many adaptive filtering algorithms exist [10, 11], and

we choose to study here the use of a Recursive Least Squares

(RLS) filter for its simplicity. RLS aims to minimize the cost

function J(n) =
∑n

j=0 λn−j |y(j)−w(j)∗u(j)|2 where y(j)
is the desired filter output, u(j) is the filter input, w(j) are the

filter coefficients, and λ is a forgetting factor used to control

the filter adaptation response time, i.e. lower values of λ yield

faster adaptation times at the cost of higher filter coefficient

variability.

The RLS algorithm is given in Table 1, with u a vector of

input data, w a vector of the filter weights, and κ is the filter

gain vector used to vary the filter weights at each step of the

algorithm. P is an estimate of the inverse of the input auto-

correlation matrix, Φ = E{uuH}. An important feature of

the RLS algorithm is that this inversion, P (n) ≈ Φ(n)−1, is

replaced at each algorithm step by a scalar division [10] (lines

2 and 5), leading to greatly reduced computation costs.

2.3. RLS-GRAPPA along x

We describe here a simple RLS implementation for Spa-

tially Variant GRAPPA, [7], which operates in the hybrid-

domain, (x, ky). Although any kernel size and number of

ACS lines can be accommodated, to visualize the implemen-

tation of RLS-SV-GRAPPA it is easiest to first consider a 1x1

GRAPPA kernel with 1 ACS line. In this case, the input vec-

tor, u, contains data from the non-ACS line used in coefficient

calibration, and the desired signal, d(n), is a point on the ACS

line. As the filter proceeds along the frequency encoding di-

mension, x, at each step new data points are introduced into

the filter and the filter weights are updated. For multiple ACS

lines, this process is repeated until all ACS points associated

with a given x location have entered the recursion. Larger

kernels operate in a similar fashion, but with multiple rows of

data replaced at each x step. After all of the ACS points at a

given point x have been processed, the missing data along the

phase-encode dimension, ky , are reconstructed.

2.4. RLS-GRAPPA along ky

With adaptive filters, one can also consider RLS processing

along the subsampled phase encode dimension. One goal here

is to enable KIPA [6] reconstructions from self-referenced

data. The approach in [6] employs an unaccelerated frame

RLS Algorithm (with forgetting factor λ):
1) a(n) = λ−1P (n− 1)u(n)
2) κ(n) = a(n)/(1 + uH(n)a(n))
3) η(n) = d(n)−wH(n− 1)u(n)
4) w(n) = w(n− 1) + κ(n)η∗(n)
5) P (n) = λ−1P (n− 1)− κ(n)aH(n)

Table 1. The RLS algorithm
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of k-space to determine the varied reconstruction coefficients,

typically provided by a pre-scan image before the accelerated

acquisition. This is because accelerated acquisitions employ-

ing additional self-referenced ACS data necessarily reduces

the achievable acceleration rate. Adaptive filtering offers an

attractive mechanism to adapt the reconstruction weights over

the k-space data grid where little additional ACS are avail-

able.

We have investigated three approaches to meet this goal. In

all cases the adaptive filtering proceeds in a manner similar to

RLS-SV-GRAPPA described above. The only change is that

new data is introduced into the recursion as one moves along

ky instead of x. The differences between the methods relate

to how often the filters are updated and the filter input sources.

In Method 1, we sought to reconstruct-and-adapt on the

data as the reconstruction kernel advanced through k-space.

That is, the reconstruction parameters calculated from a pre-

vious ky location were used to reconstruct missing data in the

present location. This reconstructed data was then used to

update the recursive filter to produce updated reconstruction

parameters.

In Method 2, we employed measured phase-encode lines as

both target and source data. That is, we employed a modified

GRAPPA reconstruction kernel to use data in all but one coil.

Then, a measured line in the remaining coil was used as the

ACS data. In was shown in [12] that GRAPPA kernels are

closely related, and one can interpolate between them. So, in

the case of a 2x1 SV-GRAPPA kernel, one could potentially

use each of the measured lines seen by the kernel to track

changes in the signal space, then interpolate between them to

identify the reconstruction parameters needed for the miss-

ing k-space data. Adaptation is performed only on measured

lines.

In Method 3, our approach is to combine the previous two.

Specifically, the adaptation is performed on both measured

and estimated lines, but the reconstruction kernel employs

only data from coils other than the coil being reconstructed.

Preliminary results indicate that this approach is able to track

signal changes in the underlying data in a manner similar

to KIPA, resulting in similar parameter variations across k-

space. These parameter variations, however, do not appear to

achieve the performance reported in the original KIPA paper.

3. RESULTS

3.1. RLS-SV-GRAPPA: adapting along x

Fig 1 shows two reconstructions of accelerated partial-

Fourier EPI data (3.34x acceleration (38/128 phase-encodes),

TR/TE:4sec/94.4msec, thickness:4.5mm) acquired using a

standard 8-channel head coil on a 3T Signa/Excite GE Scan-

ner. The non-uniform sampling pattern applied local accel-

eration factors of 2x, 1x, 2x, 3x, and 4x, in 5 equally sized

regions starting at -16 1Δ k steps below DC and ending at

63 1Δ k at the edge of k-space. This provided 8 or 9 ACS

GRAPPA RLS-SV-GRAPPA

a) b)

Fig. 1. Reconstructions of variable density subsampled data

using (a) GRAPPA and (b) RLS-SV-GRAPPA.

lines for each of the six GRAPPA kernel patterns employed.

The GRAPPA image in Fig 1(a) was constructed using a 2x5

kernel, whereas the RLS-SV-GRAPPA image in (b) was con-

structed using a 2x1 kernel and a forgetting factor λ = 0.96.

After pMRI processing was complete, each set of coil data

was homodyne filtered to compensate for the partial-Fourier

distribution of the data, then a root-sum-of-squares was per-

formed across the coil set to produce the final image.

Both images show minimal artifact or noise. The signifi-

cant difference between the two approaches was that it took

2.66 sec to identify the reconstruction parameters for the 4 lo-

cal acceleration factors using GRAPPA, but only 1.45 sec in

RLS-SV-GRAPPA using Matlab on a modest laptop.

3.2. RLS-GRAPPA along ky

Our investigation into RLS-GRAPPA along ky employed un-

accelerated data from the ACR phantom acquired on a 1.5T

GE Scanner using an FSE sequence (TR/TE:500ms/20ms,

thickness:5mm, FOV:25cm, matrix size:256x256). A 3x ac-

celerated acquisition was simulated by sampling every third

line of the data, with an additional 16 lines near DC for

auto-calibration. This gave 24 lines at the Nyquist rate

[−11Δk..12Δk] for auto calibration and a net acceleration

of 2.53x (101 lines of 256).

Fig 2 shows the parameters determined by KIPA and RLS-

GRAPPA Method 1 along the ky direction at kx = 0. The

KIPA derived parameters, Fig 2(a), show a smooth variation

as the kernel moves across k-space. In contrast, the RLS-

GRAPPA derived parameters do not show this same variation,

remaining nearly constant. Reducing the forgetting factor,

Fig 2(c), provides no benefit, as the reconstruction parame-

ter estimation appears to go unstable and exhibits significant

noise. Method 2, which uses tracking on measured lines, ex-

hibits similar results but is not shown here for brevity.

Method 3, which employs tracking and uses estimated data,

is the most promising, as shown in Fig 3. Here, the variation

in the RLS-GRAPPA estimation of the reconstruction param-

eters from the accelerated data closely mirrors the KIPA pa-

rameters calculated from unaccelerated data. Somewhat sur-

prisingly, reconstructed images (not shown for brevity) ex-

hibit only marginal improvement over standard GRAPPA.
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Fig. 2. Comparison between KIPA and RLS-GRAPPA along

ky coefficients for method 1.

4. SUMMARY

This work demonstrates that the use of adaptive filters in

GRAPPA reconstructions can provide significant benefit. We

demonstrated that the use of RLS with SV-GRAPPA provides

a fast method to identify and reconstruct accelerated pMRI

data. Secondary benefits include elimination of the need for

varied kernel size along x when computed in a hybrid do-

main as done in RLS-SV-GRAPPA. RLS along ky also shows

promise. One could certainly employ RLS on the reference

frame in KIPA, to identify the reconstruction parameters for
every k-space location in a reasonable computation time. The

ability to leverage adaptive filters for self-referenced KIPA

requires further investigation.
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