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ABSTRACT

In this paper, we propose a new shock filter algorithm for the 
thinning of hyperechoic structures observed on ultrasound (US) 
images of the equine superficial digital flexor tendon (SDFT). 
Implementation of the new algorithm is presented and applied on 
in vivo US data sets of a healthy and of an injured SDFT scanned 
with 7.5 MHz linear array transducer (SSD-2000-7.5, Aloka). 
Quantitative and qualitative results on the enhanced images show a 
coherent distribution of SDFT fiber bundles. In the case of normal 
SDFTs, the calculated number and area were respectively 48 13 
and 1.39 0.48 mm2. In the case of injured SDFTs, the calculated 
number and area were respectively 40 9 and 1.80 0.68 mm2. The 
3D reconstruction of the SDFT allowed a better assessment of the 
fiber bundles alignment along the SDFT loading axis, as well as 
the injured areas. In conclusion, segmentation results demonstrated 
the potential of the new thinning algorithm on the SDFT structure 
characterization. 
 

Index Terms—Equine tendons, shock filter, thinning 
algorithm, ultrasound imaging.

1. INTRODUCTION 
 
Ultrasound (US) is a widely used diagnostic technique to evaluate 
structures of the equine superficial digital flexor tendon (SDFT) 
after an injury and during the healing process [1]. However, the 
presence of speckle noise and artefacts affect interpretation of 
images as well as the accuracy of computer-assisted diagnostic 
techniques. The incomprehension of their contents makes feature 
extraction, analysis, recognition, and quantitative measurement 
difficult. 

On transverse two dimensional (2D) US images corresponding 
to the cross-sectional area (CSA) of the SDFT (Figure 1), healthy 
SDFTs appear parallel and as linear hyperechoic structures [1, 2]. 
These echoes are caused by the coherent specular reflections at the 
interfascicular, which surround fiber bundles and are perpendicular 
to the US beam. In injured SDFTs, areas where fibres are disrupted 
appear as hypoechoic structures, due to the disorganization of the 
interfascicular and the loss in collagen density. 

A number of methods have been addressed for speckle 
reduction and structure extraction from 2D US images including 
median filtering [3], adaptive speckle reduction filter [4], 
morphological operations [5], and Wavelet shrinkage [6]. The most 

known methods for structure extraction from 2D US images are 
based on partial differential equations (PDE’s) as nonlinear 
anisotropic diffusion [7]. The recent introduction of the PDE shock 
filter model [8, 9] may be a new method to segment US image 
contents accurately and efficiently. The shock filter is based on a 
deconvolution idea to create a sharp shock between two grey-scale 
zones on the image and produce piecewise constant segmentation. 
In this paper, a new shock filter algorithm is presented, which 
allows thinning of hyperechoic structures contained on 2D US 
images of the SDFT. The extraction of those structures and their 
quantification constitute information of great value for 
veterinarians because it enables appreciation of the structural 
integrity of the SDFT. 

 
(a) 

 
(b) 

Figure 1: (a) 2D US image of a palmar tendon horse’s hand, the 
SDFT region is identified, outlined, and zoomed in (b). 
 

2. METHODS AND PROCEDURES 
 
2.1. One dimensional deconvolution shock algorithm 
 
The shock filter model proposed by Alvarez et Mazorra [8] in the 
one dimensional (1D) case is: 
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where G is a Gaussian of standard deviation ,  and u  are the 

original and the processed signals, *  is the convolution operator, 
and 

0u

.,.F  is a function which should satisfy: 
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We set the following classical notations: 
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the smoothed original signal. The derivative scheme is an explicit 
upwind scheme [10]: 
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Schematically, values were obtained from values of , 

where k=i-1, I, i+1 and from the initial smoothed original signal 

1n
iu n

ku

0,u expressed in the function iF (Figure 2). 
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Figure 2: The explicit upwind scheme of the shock filter algorithm.  
 

We resume the above numerical scheme of the hyperbolic 
equation (1) by the following simple explicit algorithm: 
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The natures of results depend on the characteristics of the 

function F . For the classical case of the deconvolution shock 
algorithm, in which we create a discontinuity at inflexion points 
(i.e., zero-crossing of 0,

xxu ), a simple choice for F that satisfies 
equation (2) is F = F1: 

1 0, 0,
i xx x i

F sign u sign u  (5) 

 
where sign(.) is the sign function. 

Figure 3 is an example showing the evolution of the 
deconvolution shock algorithm (the signal curve) for blur removal. 
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Figure 3: Restoration of a curved signal by the deconvolution 
shock algorithm after 30 iterations; . 0,0 sinu x
 

The deconvolution shock algorithm offers better results than 
the traditional PDE technique as nonlinear anisotropic diffusion 
[7], for instance, we noticed the creation of a sharp shock at the 
inflection points of the smoothed original signal, which is 
piecewise constant signal. 

2.2. Hypothesis 
 
Before evaluating the effectiveness of the proposed thinning shock 
algorithm, we pose assumptions in relation to our study. Indeed, 
the main objective of the study is to thin hyperechoic structures on 
2D US images of the SDFT. The first assumption was to consider 
that the US image profiles are multimodal signals, i.e. they present 
hyperechoic structures. We also considered that points on which 
thinning should occur around them were those corresponding to 
the local maxima of the signals. 

 
2.3. One dimensional thinning shock algorithm 
 
A simple technique to characterize points corresponding to local 
maxima of the signal is to calculate the first derivative of the 
smoothed original signal 0,u . Locations of the zero crossing of 

0,
xu correspond to the curve of local extrema. Then, the process of 

shock thinning governed by the new function F will leave these 
extrema invariant, and it will make other pixels evolve/move 
according to their local properties (sign of the first derivative of 
the smoothed original signal). A simple choice for F that verifies 
equation (2) is F= F2: 

2 0
i x i

F sign u ,  (6) 
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Figure 4: Skeleton of the 1D unimodal signal obtained by the 
thinning shock algorithm after 30 iterations; 0,0 sinu x . 
 

The following example (Figure 5) is the application of the 
deconvolution and thinning shock algorithms on a signal, which 
has inflection points and many lobes (local maxima). 

Inflexion points Lobes (local maxima)

(a)

(b)

(c)

Inflexion points Lobes (local maxima)

(a)

(b)

(c)

 
Figure 5: On the left panels, we show the solution by the 
deconvolution shock algorithm for the initial smoothed signal u0,0= 
sin(5x)+cos(7x). We notice discontinuities at the location of the 
zero crossing of 0,0

xxu . On the right panels, we show the solution by 

the thinning shock algorithm applied on the same signal . It is 
shown that the thinning occurs at the location of the local maxima 
of : (a) original signal; (b) signal sequence at iteration 8; and 
(c) signal sequence at iteration 30. 

0,0u

0,0u
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2.4. Two-dimensional thinning algorithm 
 
The 2D shock filter model proposed by Alvarez and Mazorra [8] is 
composed of two parts : an anisotropic diffusion and a shock filter. 
In our study, we ignored the anisotropic diffusion term and the 2D 
model was written as:  
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where I0 and I are the original and processed images,  is the 

direction of the gradient of I, i.e. /I I ,  is the 

gradient operator, .  is Euclidian norm, F satisfies equation (2), 

and G  is a 2D Gaussian of standard deviation .  
Before introducing our 2D thinning algorithm, we set the 

following notation:  is the smoothed original 

image. The term 

0, 0*I G I
0,I  is approximated as gradient, i.e. 

0, 0,I I  as described in [8]. The choice of the function F is 

based on the same consideration as the 1D case. 

The 2D upwind scheme is established for deconvolution and 
thinning because it guarantees the detection of local extrema 
according to the choice of the F function. The 2D thinning 
algorithm is the following explicit scheme:  

1
, , ,
n n n
i j i j i jI I t R I  (8) 

where: 
2 2

, , , ,

2 2

, , ,

2
, ,

, 1, , , , 1 ,

max 0, min 0,

,

n n
i j i j i j i j i j

n n n
i j x i j y i j

i j i j

n n n n n n
x i j i j i j y i j i j i j

R I F K I F K I

K I I I

F sign I

I I I and I I I

,
n

 

The proposed algorithm is unconditionally stable and 
convergent [10]. 

 
 
(9) 

 
3. RESULTS 

The application of the 2D thinning shock algorithm on the clinical 
2D US images of the SDFT gave results similar to the 1D case. 
Thinning was done according to the gradient direction; and it was 
performed around the hyperechoic structures (local maxima) where 
they were left invariant. The results (Figure 6) show that the 
process converged well towards a bright thin interface. The 
thinning iterative process was based on a stop criterion conditioned 
by the error between two consecutive image sequences with a 
maximum of 50 iterations. 

Figure 7 contains a close-up of the images in Figure 6 (boxed 
segments) including their corresponding 3D surfaces. The surface 
of the original segment (Figure 7-a) had two hyperechoic 
structures degraded by the speckles noise. The two surfaces 
corresponding to the segments after 20 and 30 iterations show that 
the thinning process removes speckles and the bright structures 
became finer and clearer (Figures 7-b and 7-c).  
 

(a)

(b) (c)

(a)

(b) (c)

(a)

(b) (c)

 
 

Figure 6: Thinning of the hyperechoic structure contained in the 
US image of the SDFT by the proposed 2D thinning shock 
algorithm: (a) original 2D US image of the SDFT after smoothing 
by a Gaussian operator with 2 ; (b) image sequence at iteration 
20; (c) image sequence at iteration 50.  

 

(a)

(b)

(c)

(a)

(b)

(c)  
 
Figure 7: Segments (areas of interest) from images of figure 6 and 
their corresponding 3D surfaces: (a) original image segment; (b) 
segment at iteration 20; (b) segment at iteration 30. 
 

To facilitate the extraction of quantitative information on fiber 
bundles, and also to improve the 2D and 3D visualization of the 
SDFT internal structure, a morphological closing operator was 
applied on the thinned hyperechoic structures by using the 
automatic ImageJ software function Watershed [11, 12] (Figure 8), 
as a final step of segmentation. A fiber bundle is defined as the 
smallest closed structure in the segmented image [1]. 
 

 
 

Figure 8: Superposition of the US image and closed hyperechoic 
structures by an automatic watershed operation [11].  
 

Segmentation by the present algorithm was performed on in
vivo US data sets of 8 healthy and 3 injured SDFTs scanned with a 
7.5 MHz linear array transducer (SSD-2000-7.5, Aloka). Each data 
set had 120±15 frames. Quantitative measurements are done on 
CSA of tendons to deduce the number of fiber bundles and the area 
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of each one. In the case of normal SDFTs, the calculated number 
and area were respectively 48 13 and 1.39 0.48 mm2. In the case 
of injured SDFTs, the calculated number and area were 
respectively 40 9 and 1.80 0.68 mm2. The determined area values 
corroborate those found by Gillis et al. [13] (1.41 0.52 mm2), who 
used an in vitro histomorphometric evaluation. Thirty successive 
segmented images were used to construct 3D views of the SDFT, 
from which the fiber bundles alignment along the SDFT loading 
axis (Figure 9), as well as the injured areas (Figure 10), can be 
assessed. 

 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Figure 9: Different 3D views of a part of a healthy SDFT: (a) top 
view; (b) face view; (c) longitudinal cut of the tendon; and (d) 
oblique cut of the tendon. 
 

(a) (b)

(c)
(d)

(a) (b)

(c)
(d)

 
Figure 10: Different 3D views of a part of an injured SDFT: (a) top 
view; (b) face view; (c) longitudinal cut of the tendon; and (d) 
oblique cut of the tendon. 
 

4. CONCLUSION 
 
This study enabled us to be aware of the possibilities offered by 
the shock filter approaches in ultrasound image processing. Based 
on the numerical scheme of the Alvarez and Mazorra shock filter 
[8], we succeeded in modifying it to obtain encouraging results on 
the thinning of the hyperechoic structures contained in 2D US 
images of the SDFT. 

The experimental results are promising and show that 
segmentation by the proposed thinning algorithm can provide a 
coherent 2D and 3D structures, from which the structural integrity 
of tendons can be appreciated. A large scale study should however 
be performed to fully validate the proposed method. 
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